Contents

Under review

See https://github.com/ReScience/submissions/issues

Volume 9 (2023)

Issue 1

  1. Replication in ecology (R) | 10.5281/zenodo.10371655 | PDF | Code | Review | BibTeX
    Doyen, G., Picoche, C., and Barraquand, F. 2023. [Re] Biodiversity of plankton by species oscillations and chaos. ReScience C 9, 1, #4.

  2. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.10257800 | PDF | Code | Data | Review | BibTeX
    Lima, V., Shimoura, R.O., Kamiji, N.L., Battaglia, D., and Roque, A.C. 2023. [Re] Inter-areal Balanced Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate Cortex. ReScience C 9, 1, #3.

  3. Replication in Education Policy (Python) | 10.5281/zenodo.10255347 | PDF | Code | Review | BibTeX
    Allard, T., Béziaud, L., and Gambs, S. 2023. [ Re]Simulating socioeconomic-based affirmative action. ReScience C 9, 1, #2.

  4. Replication in Computer Vision (Python) | 10.5281/zenodo.7800679 | PDF | Code | Data | Review | BibTeX
    Lemmens, J., Jancura, P., Dubbelman, G., and Elrofai, H. 2023. [Re] Object Detection Meets Knowledge Graphs. ReScience C 9, 1, #1.

Issue 2

  1. Editorial in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8200058 | PDF | BibTeX
    Sinha, K., Bleeker, M., Bhargav, S., et al. 2023. ML Reproducibility Challenge 2022. ReScience C 9, 2, #46.

  2. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173652 | PDF | Code | Review | BibTeX
    Erkol, M., Kınlı, F., Özcan, B., and Kıraç, F. 2023. [Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization. ReScience C 9, 2, #2.

  3. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173654 | PDF | Code | Review | BibTeX
    McLeish, S. and Tran-Thanh, L. 2023. [Re] End-to-end Algorithm Synthesis with Recurrent Networks: Logical Extrapolation Without Overthinking. ReScience C 9, 2, #3.

  4. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173656 | PDF | Code | Review | BibTeX
    Langezaal, E.R., Belleman, J., Veenboer, T., and Noorthoek, J. 2023. [Re] Label-Free Explainability for Unsupervised Models. ReScience C 9, 2, #4.

  5. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173658 | PDF | Code | Review | BibTeX
    Brivio, M. and Çöltekin, Ç. 2023. [Re] Exploring the Representation of Word Meanings in Context. ReScience C 9, 2, #5.

  6. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173662 | PDF | Code | Review | BibTeX
    Marini, L., Nabeel, M., and Loiko, A. 2023. [Re] Intriguing Properties of Contrastive Losses. ReScience C 9, 2, #6.

  7. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173664 | PDF | Code | Review | BibTeX
    Žontar, L. 2023. [Re] Bandit Theory and Thompson Sampling-guided Directed Evolution for Sequence Optimization. ReScience C 9, 2, #7.

  8. Replication in ML Reproducibility Challenge 2022 (python, bash) | 10.5281/zenodo.8173666 | PDF | Code | Review | BibTeX
    Yuan, J. and Le-Phuoc, D. 2023. [Re] Hypergraph-Induced Semantic Tuplet Loss for Deep Metric Learning. ReScience C 9, 2, #8.

  9. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173668 | PDF | Code | Review | BibTeX
    Špendl, M. and Pirc, K. 2023. [Re] Easy Bayesian Transfer Learning with Informative Priors. ReScience C 9, 2, #9.

  10. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173672 | PDF | Code | Review | BibTeX
    Dubbeldam, E., Eijpe, A., Ruthardt, J., and Sasse, R. 2023. [Re] On the Reproducibility of CartoonX. ReScience C 9, 2, #10.

  11. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173674 | PDF | Code | Review | BibTeX
    Pariza, V., Pal, A., Pawar, M., and Faber, Q.S. 2023. [Re] Reproducibility Study of “Label-Free Explainability for Unsupervised Models.” ReScience C 9, 2, #11.

  12. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173678 | PDF | Code | Data | Review | BibTeX
    Morita, K. 2023. [Re] FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles. ReScience C 9, 2, #12.

  13. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173680 | PDF | Code | Review | BibTeX
    Buchner, V.L., Schutte, P.O.O., Allal, Y.B., and Ahadi, H. 2023. [Re] Fairness Guarantees under Demographic Shift. ReScience C 9, 2, #13.

  14. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173682 | PDF | Code | Review | BibTeX
    Camara, P., Kloos, M., Kyrmanidi, V., Kluska, A., Terlou, R., and Krause, L. 2023. [Re] DialSummEval - Evaluation of automatic summarization evaluation metrics. ReScience C 9, 2, #14.

  15. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173686 | PDF | Code | Review | BibTeX
    Don, M., Chatterji, S., Kapralova, M., and Amaudruz, R. 2023. [Re] On the Reproducibility of "FairCal: Fairness Calibration for Face Verification". ReScience C 9, 2, #15.

  16. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173688 | PDF | Code | Review | BibTeX
    Garcarz, S., Giorkatzi, A., Ivășchescu, A., and Pîslar, T.-M. 2023. [Re] Reproducibility Study: Label-Free Explainability for Unsupervised Models. ReScience C 9, 2, #16.

  17. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173692 | PDF | Code | Review | BibTeX
    Martorella, T., Contreras, H.M.R., and García, D.C. 2023. [Re] Numerical influence of ReLU’(0) on backpropagation. ReScience C 9, 2, #17.

  18. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8206607 | PDF | Code | Review | BibTeX
    Agafonov, D., Matthijsse, J., Nonkes, N., and Sande, Z. van de. 2023. [¬Re] A Reproducibility Case Study of “Fairness Guarantees under Demographic Shift.” ReScience C 9, 2, #18.

  19. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173696 | PDF | Code | Review | BibTeX
    Mohorčič, D. and Ocepek, D. 2023. [Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods. ReScience C 9, 2, #19.

  20. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173698 | PDF | Code | Review | BibTeX
    Hu, A., Ranum, O., Pozrikidou, C., and Zhou, M. 2023. [Re] Reproducibility study of Joint Multisided Exposure Fairness for Recommendation. ReScience C 9, 2, #20.

  21. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173703 | PDF | Code | Review | BibTeX
    Türk, M., Busser, L., Dijk, D. van, and Bosch, M.J.A. 2023. [Re] Exploring the Explainability of Bias in Image Captioning Models. ReScience C 9, 2, #21.

  22. Replication in ML Reproducibility Challenge 2022 (python) | 10.5281/zenodo.8173705 | PDF | Code | Review | BibTeX
    Bikker, D., Kleuver, G. de, Hu, W., and Veenman, B. 2023. [¬Re] Reproducibility study of ‘Proto2Proto: Can you recognize the car, the way I do?’ ReScience C 9, 2, #22.

  23. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173707 | PDF | Code | Review | BibTeX
    Simoncini, W., Gogou, I., Lopes, M.F., and Kremer, R. 2023. [Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows.” ReScience C 9, 2, #23.

  24. Replication in ML Reproducibility Challenge 2022 (python) | 10.5281/zenodo.8173711 | PDF | Code | Review | BibTeX
    Papp, G., Wagenbach, J., Vries, L.J. de, and Mather, N. 2023. [Re] Reproducibility study of ”Label-Free Explainability for Unsupervised Models.” ReScience C 9, 2, #24.

  25. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173713 | PDF | Code | Review | BibTeX
    Buis, E., Dijkstra, S., and Heijermans, B. 2023. [Re] Reproducibility study of “Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention.” ReScience C 9, 2, #25.

  26. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173715 | PDF | Code | Data | Review | BibTeX
    Baratov, F., Yüksel, G., Petcu, D., and Bakker, J. 2023. [Re] Reproducibility Study of "Quantifying Societal Bias Amplification in Image Captioning". ReScience C 9, 2, #26.

  27. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173717 | PDF | Code | Review | BibTeX
    Zila, E., Gerbscheid, J., Sträter, L., and Kretschmar, K. 2023. [Re] On the reproducibility of "CrossWalk: Fairness-Enhanced Node Representation Learning". ReScience C 9, 2, #27.

  28. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173719 | PDF | Code | Review | BibTeX
    Greven, J., Stallinga, S., and Seljee, Z. 2023. [Re] Reproducing FairCal: Fairness Calibration for Face Verification. ReScience C 9, 2, #28.

  29. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173721 | PDF | Code | Review | BibTeX
    Taslimi, S., Foeng, L.C.A., Kayal, P., Patra, A.P., and Patra, A.P. 2023. [Re] Reproducibility Study of ’CartoonX: Cartoon Explanations of Image Classifiers.’ ReScience C 9, 2, #29.

  30. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173725 | PDF | Code | Review | BibTeX
    Merk, D., Smit, D., Beukers, B., and Mendsuren, T. 2023. [Re] Reproducibility Study of ”Latent Space Smoothing for Individually Fair Representations.” ReScience C 9, 2, #30.

  31. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173729 | PDF | Code | Review | BibTeX
    Aillet, A. and Sondén, S. 2023. [Re] Variational Neural Cellular Automata. ReScience C 9, 2, #31.

  32. Replication in ML Reproducibility Challenge 2022 (python) | 10.5281/zenodo.8173733 | PDF | Code | Review | BibTeX
    Benmerzoug, A. and Benito Delgado, M. de. 2023. [Re] If you like Shapley, then you’ll love the core. ReScience C 9, 2, #32.

  33. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173735 | PDF | Code | Review | BibTeX
    Livernoche, V. and Sujaya, V. 2023. [Re] A Reproduction of Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification. ReScience C 9, 2, #33.

  34. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173737 | PDF | Code | Review | BibTeX
    Cordaro, D., Cox, S., Ren, Y., and Yu, T. 2023. [¬Re] G-Mixup: Graph Data Augmentation for Graph Classification. ReScience C 9, 2, #34.

  35. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173739 | PDF | Code | Review | BibTeX
    Bose, P., Pandey, C.S., and Fund, F. 2023. [Re] Exploring the Role of Grammar and Word Choice in Bias Toward African American English (AAE) in Hate Speech Classification. ReScience C 9, 2, #35.

  36. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173741 | PDF | Code | Review | BibTeX
    Antequera, P., Gonzalez, E., Grasa, M., and Raaphorst, M. van. 2023. [Re] RELIC: Reproducibility and Extension on LIC metric in quantifying bias in captioning models. ReScience C 9, 2, #36.

  37. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173745 | PDF | Code | Review | BibTeX
    Kyrylov, V., Bedi, N.S., and Zang, Q. 2023. [Re] VAE Approximation Error: ELBO and Exponential Families. ReScience C 9, 2, #37.

  38. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173747 | PDF | Code | Review | BibTeX
    Moens, G.J., Witte, J. de, Göbel, T.P., and Oever, M. van den. 2023. [Re] CrossWalk Fairness-enhanced Node Representation Learning. ReScience C 9, 2, #38.

  39. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173749 | PDF | Code | Review | BibTeX
    Pantea, L. and Blahovici, A. 2023. [Re] CrossWalk: Fairness-enhanced Node Representation Learning. ReScience C 9, 2, #39.

  40. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173751 | PDF | Code | Review | BibTeX
    Charisoudis, A., Huth, S.E. von, and Jansson, E. 2023. [Re] Masked Autoencoders Are Small Scale Vision Learners: A Reproduction Under Resource Constraints. ReScience C 9, 2, #40.

  41. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173753 | PDF | Code | Review | BibTeX
    Mahlau, Y., Kayser, L., and Berg, L. 2023. [Re] On Explainability of Graph Neural Networks via Subgraph Explorations. ReScience C 9, 2, #41.

  42. Replication in ML Reproducibility Challenge 2022 (Python3) | 10.5281/zenodo.8173755 | PDF | Code | Data | Review | BibTeX
    Alexander, S., Ildus, S., and Evgeniy, S. 2023. [Re] "Towards Understanding Grokking". ReScience C 9, 2, #42.

  43. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173757 | PDF | Code | Data | Review | BibTeX
    Moalla, S., Madeira, M., Riccio, L., and Lee, J. 2023. [Re] Reproducibility Study of Behavior Transformers. ReScience C 9, 2, #43.

  44. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173759 | PDF | Code | Review | BibTeX
    Sun, K., Williams, A., and Hupkes, D. 2023. [Re] A Replication Study of Compositional Generalization Works on Semantic Parsing. ReScience C 9, 2, #44.

  45. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173763 | PDF | Code | Review | BibTeX
    Lee, S.R. and Lee, S.B. 2023. [Re] Pure Noise to the Rescue of Insufficient Data. ReScience C 9, 2, #45.

  46. Replication in ML Reproducibility Challenge 2022 (Python) | 10.5281/zenodo.8173650 | PDF | Code | Review | BibTeX
    Omeragić, E. and Đuranović, V. 2023. [Re] G-Mixup: Graph Data Augmentation for Graph Classification. ReScience C 9, 2, #1.

Volume 8 (2022)

Issue 2 (ML Reproducibility Challenge 2021)

  1. Editorial in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574723 | PDF | BibTeX
    Sinha, K., Dodge, J., Luccioni, S., et al. 2022. ML Reproducibility Challenge 2021. ReScience C 8, 2, #48.

  2. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574625 | PDF | Code | Review | BibTeX
    Ankit, A., Ambekar, S., Varadharajan, B., and Alence, M. 2022. [Re] Counterfactual Generative Networks. ReScience C 8, 2, #2.

  3. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574629 | PDF | Code | Review | BibTeX
    Ashok, A. and Aekula, H. 2022. [Re] Does Self-Supervision Always Improve Few-Shot Learning? ReScience C 8, 2, #3.

  4. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574631 | PDF | Code | Review | BibTeX
    Athanasiadis, I., Moschovis, G., and Tuoma, A. 2022. [Re] Weakly-Supervised Semantic Segmentation via Transformer Explainability. ReScience C 8, 2, #4.

  5. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574635 | PDF | Code | Review | BibTeX
    Bagad, P., Hilders, P., Maas, J., and Goede, D. de. 2022. [Re] Reproducibility Study of “Counterfactual Generative Networks.” ReScience C 8, 2, #5.

  6. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574637 | PDF | Code | Review | BibTeX
    Boer, S. de, Cosma, R.A., Knobel, L., Koishekenov, Y., and Shaffrey, B. 2022. [Re] Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling. ReScience C 8, 2, #6.

  7. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574639 | PDF | Code | Review | BibTeX
    Brivio, M. and Çöltekin, Ç. 2022. [¬Re] Hate Speech Detection based on Sentiment Knowledge Sharing. ReScience C 8, 2, #7.

  8. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574641 | PDF | Code | Review | BibTeX
    Burger, M., Burg, K. ter, Titarsolej, S., and Khan, S.J. 2022. [Re] Reproducibility Study - SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition. ReScience C 8, 2, #8.

  9. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574643 | PDF | Code | Review | BibTeX
    Buvanesh, A. and Panwar, M. 2022. [Re] AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients. ReScience C 8, 2, #9.

  10. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574645 | PDF | Code | Review | BibTeX
    Dasu, V.A. and T.K., M.M. 2022. [Re] GANSpace: Discovering Interpretable GAN Controls. ReScience C 8, 2, #10.

  11. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574647 | PDF | Code | Review | BibTeX
    Drabent, K., Wijnja, S., Sluijter, T., and Bereda, K. 2022. [Re] Replication study of "Privacy-preserving Collaborative Learning". ReScience C 8, 2, #11.

  12. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574649 | PDF | Code | Review | BibTeX
    Džubur, B. 2022. [Re] A Cluster-based Approach for Improving Isotropy in Contextual Embedding Space. ReScience C 8, 2, #12.

  13. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574651 | PDF | Code | Review | BibTeX
    Eaton, E. and Naghavi, P. 2022. [Re] Reproduction and Extension of "Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation". ReScience C 8, 2, #13.

  14. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574653 | PDF | Code | Review | BibTeX
    Eijkelboom, F., Fokkema, M., Lau, A., and Verheijen, L. 2022. [Re] Reproduction Study of Variational Fair Clustering. ReScience C 8, 2, #14.

  15. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574655 | PDF | Code | Review | BibTeX
    Geijn, C. van de, Kyriacou, V., Papadopoulou, I., and Vasileiou, V. 2022. [Re] Explaining in Style: Training a GAN to explain a classifier in StyleSpace. None 8, 2, #15.

  16. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574657 | PDF | Code | Review | BibTeX
    Hardy, I. 2022. [Re] An Implementation of Fair Robust Learning. ReScience C 8, 2, #16.

  17. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574659 | PDF | Code | Data | Review | BibTeX
    Höppe, T., Miszkurka, A., and Wilkman, D.B. 2022. [Re] Understanding Self-Supervised Learning Dynamics without Contrastive Pairs. ReScience C 8, 2, #17.

  18. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574661 | PDF | Code | Data | Review | BibTeX
    Jiles, R. and Chakraborty, M. 2022. [Re] Domain Generalization using Causal Matching. ReScience C 8, 2, #18.

  19. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574663 | PDF | Code | Review | BibTeX
    Kirca, I.-A., Hamerslag, D., Baas, A., and Prent, J. 2022. [¬Re] Reproducibility Study of ’Exacerbating Algorithmic Bias through Fairness Attacks’ . ReScience C 8, 2, #19.

  20. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574665 | PDF | Code | Review | BibTeX
    Kolkman, G., Athmer, J., Labro, A., and Kulicki, M. 2022. [Re] Strategic classification made practical: reproduction. ReScience C 8, 2, #20.

  21. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574667 | PDF | Code | Review | BibTeX
    Bosch, E., Ettes, R., Korporaal, D., and Meer, G. van. 2022. [Re] Replication study of ’Explaining in Style: Training a GAN to explain a classifier in StyleSpace.’ None 8, 2, #21.

  22. Replication in ML Reproducibility Challenge 2021 (python) | 10.5281/zenodo.6574669 | PDF | Code | Review | BibTeX
    Tafuro, M., Lombardo, A., Veljković, T.H., and Becker-Czarnetzki, L. 2022. [Re] Exacerbating Algorithmic Bias through Fairness Attacks. ReScience C 8, 2, #22.

  23. Replication in ML Reproducibility Challenge 2021 (R) | 10.5281/zenodo.6574671 | PDF | Code | Review | BibTeX
    De Luisa, A. 2022. [Re] Thompson Sampling for Bandits with Clustered Arms. ReScience C 8, 2, #23.

  24. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574673 | PDF | Code | Review | BibTeX
    Mast, D. van der, Haddou, S.B., Chu, J., and Stefels, J. 2022. [Re] Replication Study of "Fairness and Bias in Online Selection". None 8, 2, #24.

  25. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574675 | PDF | Code | Review | BibTeX
    Chen, A., Matsumoto, S., and Varma, R.S. 2022. [Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices. ReScience C 8, 2, #25.

  26. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574677 | PDF | Code | Review | BibTeX
    Mehta, A., Uppal, K., Jadhav, K., Natarajan, M., Agrawal, M., and Chakravarty, D. 2022. [Re] Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation. ReScience C 8, 2, #26.

  27. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574679 | PDF | Code | Review | BibTeX
    Mikler, S. 2022. [Re] Reproducibility Study: Comparing Rewinding and Fine-tuning in Neural Network Pruning. ReScience C 8, 2, #27.

  28. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574681 | PDF | Code | Review | BibTeX
    Nalmpantis, A., Panagiotopoulos, A., Gkountouras, J., and Papakostas, K. 2022. [Re] Exacerbating Algorithmic Bias through Fairness Attacks. None 8, 2, #28.

  29. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574683 | PDF | Code | Data | Review | BibTeX
    Neplenbroek, V., Perdijk, S., and Prins, V. 2022. [Re] Replication study of ’Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling.’ ReScience C 8, 2, #29.

  30. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574685 | PDF | Code | Review | BibTeX
    Galatolo, A. and Nilsson, A. 2022. [Re] Replicating and Improving GAN2Shape Through Novel Shape Priors and Training Steps. ReScience C 8, 2, #30.

  31. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574687 | PDF | Code | Review | BibTeX
    Panigrahi, S.S. and Patnaik, S. 2022. [Re] Value Alignment Verification. ReScience C 8, 2, #31.

  32. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574689 | PDF | Code | Review | BibTeX
    Petcu, R., Praat, P., Wijnen, J., and Rerres, M. 2022. [Re] Replication Study of "Fairness and Bias in Online Selection". ReScience C 8, 2, #32.

  33. Replication in ML Reproducibility Challenge 2021 (Python 3) | 10.5281/zenodo.6574691 | PDF | Code | Review | BibTeX
    Peters, N., Crosbie, J., Hull, R. vant́, and Strampel, M. 2022. [¬Re] Reproducing ’Fair Selective Classification via Sufficiency.’ None 8, 2, #33.

  34. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574693 | PDF | Code | Review | BibTeX
    Ranjan, R., Bhakta, H., Jha, A., and Maheshwari, P. 2022. [Re] Differentiable Spatial Planning using Transformers. ReScience C 8, 2, #34.

  35. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574695 | PDF | Code | Review | BibTeX
    Rucks, N., Uelwer, T., and Harmeling, S. 2022. [Re] Solving Phase Retrieval With a Learned Reference. ReScience C 8, 2, #35.

  36. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574697 | PDF | Code | Review | BibTeX
    Sen, R., Sinha, S., Jha, A., and Maheshwari, P. 2022. [Re] Reproducibility Report: Contrastive Learning of Socially-aware Motion Representations. ReScience C 8, 2, #36.

  37. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574699 | PDF | Code | Review | BibTeX
    Shukla, A., Roy, S., Chawla, Y., et al. 2022. [Re] From goals, waypoints and paths to longterm human trajectory forecasting. ReScience C 8, 2, #37.

  38. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574701 | PDF | Code | Review | BibTeX
    Stropnik, V. and Oražem, M. 2022. [Re] Graph Edit Networks. ReScience C 8, 2, #38.

  39. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574703 | PDF | Code | Data | Review | BibTeX
    Kljun, M., Teršek, M., and Vreš, D. 2022. [Re] Learning to count everything. ReScience C 8, 2, #39.

  40. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574705 | PDF | Code | Review | BibTeX
    Togt, J. van der, Tiyavorabun, L., Rosati, M., and Starace, G. 2022. [Re] Badder Seeds: Reproducing the Evaluation of Lexical Methods for Bias Measurement. ReScience C 8, 2, #40.

  41. Replication in ML Reproducibility Challenge 2021 (Python, Matlab) | 10.5281/zenodo.6574707 | PDF | Code | Review | BibTeX
    Trojer, Ž. 2022. [Re] Transparent Object Tracking Benchmark. ReScience C 8, 2, #41.

  42. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574709 | PDF | Code | Review | BibTeX
    Vleuten, N. van der, Radusinović, T., Akkerman, R., and Reksoprodjo, M. 2022. [Re] Explaining in Style: Training a GAN to explain a classifier in StyleSpace. None 8, 2, #42.

  43. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574711 | PDF | Code | Review | BibTeX
    Shulev, V., Verhagen, P., Wang, S., and Zhuge, J. 2022. [Re] Replication Study of DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks. ReScience C 8, 2, #43.

  44. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574713 | PDF | Code | Review | BibTeX
    Warmerdam, A.T., Loerakker, L., Meijer, L., and Nissen, O. 2022. [Re] Privacy-preserving collaborative learning with automatic transformation search. ReScience C 8, 2, #44.

  45. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574715 | PDF | Code | Review | BibTeX
    Wilschut, R.I., Wiggers, T.P.A., Oort, R.S., and Orden, T.A. van. 2022. [Re] Robust Counterfactual Explanations on Graph Neural Networks. ReScience C 8, 2, #45.

  46. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574719 | PDF | Code | Review | BibTeX
    Yılmaz, D., Kınlı, F., Özcan, B., and Kıraç, F. 2022. [Re] Lifting 2D StyleGAN for 3D-Aware Face Generation. ReScience C 8, 2, #46.

  47. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574721 | PDF | Code | Review | BibTeX
    Zrimšek, U. 2022. [Re] Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction. ReScience C 8, 2, #47.

  48. Replication in ML Reproducibility Challenge 2021 (Python) | 10.5281/zenodo.6574623 | PDF | Code | Review | BibTeX
    Ahmed, W. and Samuel, S. 2022. [Re] Nondeterminism and Instability in Neural Network Optimization. ReScience C 8, 2, #1.

Issue 1

  1. Replication in Social Psychology (Python) | 10.5281/zenodo.7484072 | PDF | Code | Review | BibTeX
    Wallrich, L. 2022. [Re] Groups of diverse problem-solvers outperform groups of highest-ability problem-solvers - most of the time. ReScience C 8, 1, #6.

  2. Replication in Biological Computing (Octave) | 10.5281/zenodo.6801765 | PDF | Code | Review | BibTeX
    Sant’Anna, G.B. de and Costa, M.F. 2022. [Re] A Multi-Functional Synthetic Gene Network. ReScience C 8, 1, #5.

  3. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.6573684 | PDF | Code | Review | BibTeX
    Misiek, T. and Khamassi, M. 2022. [Re] A general model of hippocampal and dorsal striatal learning and decision making. ReScience C 8, 1, #4.

  4. Replication in Ecology (C++) | 10.5281/zenodo.6546488 | PDF | Code | Review | BibTeX
    Picoche, C., Young, W.R., and Barraquand, F. 2022. [Re] Reproductive pair correlations and the clustering of organisms. ReScience C 8, 1, #3.

  5. Replication in Computational Neuroscience (Python) | https://doi.org/10.5281/zenodo.6484021 | PDF | Code | Review | BibTeX
    Gillard, T., Fix, J., and Dutech, A. 2022. [Re] Modeling habits as self-sustained patterns of sensorimotor behavior. ReScience C 8, 1, #2.

  6. Replication in Computer Science (Python) | 10.5281/zenodo.6255131 | PDF | Code | Review | BibTeX
    Maurel, D., Fillioux, J., and Gugenheim, D. 2022. [Re] Effective Program Debloating via Reinforcement Learning. ReScience C 8, 1, #1.

Volume 7 (2021)

Issue 2 (ML Reproducibility Challenge 2020)

  1. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4835602 | PDF | Code | Review | BibTeX
    Verma, R., Wagemans, J.J.O., Dahal, P., and Elfrink, A. 2021. [Re] Explaining Groups of Points in Low-Dimensional Representations. ReScience C 7, 2, #24.

  2. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4833219 | PDF | Code | Data | Review | BibTeX
    Albanis, G., Zioulis, N., Chatzitofis, A., Dimou, A., Zarpalas, D., and Daras, P. 2021. [Re] On end-to-end 6DoF object pose estimation and robustness to object scale. ReScience C 7, 2, #2.

  3. Replication in ML Reproducibility Challenge 2020 (python) | 10.5281/zenodo.4833389 | PDF | Code | Review | BibTeX
    Arvind, M. and Mama, M. 2021. [Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It. ReScience C 7, 2, #3.

  4. Replication in ML Reproducibility Challenge 2020 (python) | 10.5281/zenodo.4833547 | PDF | Code | Review | BibTeX
    Teule, T., Reints, N., Gerges, C.A., and Baanders, P. 2021. [Re] Deep Fair Clustering for Visual Learning. ReScience C 7, 2, #4.

  5. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4833681 | PDF | Code | Review | BibTeX
    Garg, P., Singhal, L., and Sardana, A. 2021. [Re] Training Binary Neural Networks using the Bayesian Learning Rule. ReScience C 7, 2, #5.

  6. Replication in ML Reproducibility Challenge 2020 (Python 3) | 10.5281/zenodo.4834146 | PDF | Code | Data | Review | BibTeX
    Habacker, R., Harrison, A., Parisot, M., and Snijders, A. 2021. [Re] Reproducing Learning to Deceive With Attention-Based Explanations. ReScience C 7, 2, #6.

  7. Replication in ML Reproducibility Challenge 2020 (English) | 10.5281/zenodo.4834242 | PDF | Code | Review | BibTeX
    Holdijk, L., Boon, M., Henckens, S., and Jong, L. de. 2021. [Re] Parameterized Explainer for Graph Neural Network. ReScience C 7, 2, #7.

  8. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4834352 | PDF | Code | Review | BibTeX
    Kim, S.S.Y., Zhang, S., Meister, N., and Russakovsky, O. 2021. [Re] Don’t Judge an Object by Its Context: Learning to Overcome Contextual Bias. ReScience C 7, 2, #8.

  9. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4834442 | PDF | Code | Review | BibTeX
    Li, C., Tu, R., and Zhang, H. 2021. [Re] Reimplementation of FixMatch and Investigation on Noisy (Pseudo) Labels and Confirmation Errors of FixMatch. ReScience C 7, 2, #9.

  10. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4834516 | PDF | Code | Review | BibTeX
    Liiv, T., Lennelöv, E., and Norén, A. 2021. [Re] A Reproduction of Ensemble Distribution Distillation. ReScience C 7, 2, #10.

  11. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4834610 | PDF | Code | Review | BibTeX
    Stephen, K. and Menon, V. 2021. [Re] Learning Memory Guided Normality for Anomaly Detection. ReScience C 7, 2, #11.

  12. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4834672 | PDF | Code | Review | BibTeX
    Menteş, S., Kınlı, F., Özcan, B., and Kıraç, F. 2021. [Re] Spatial-Adaptive Network for Single Image Denoising. ReScience C 7, 2, #12.

  13. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4834744 | PDF | Code | Review | BibTeX
    Mizrahi, D., Yüksel, O.K., and Kyzy, A.M. 2021. [Re] Can gradient clipping mitigate label noise? ReScience C 7, 2, #13.

  14. Replication in ML Reproducibility Challenge 2020 (python) | 10.5281/zenodo.4834856 | PDF | Code | Review | BibTeX
    Kireev, K., Mohtashami, A., and Pajouheshgar, E. 2021. [Re] Warm-Starting Neural Network Training. ReScience C 7, 2, #14.

  15. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4834942 | PDF | Code | Review | BibTeX
    P, J.J. and Sardana, A. 2021. [Re] Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings. ReScience C 7, 2, #15.

  16. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4835056 | PDF | Code | Review | BibTeX
    Reijnaers, D.J.W., Pavert, D.B. van de, Scheuer, G., and Huang, L. 2021. [Re] Explaining Groups of Points in Low-Dimensional Representations. ReScience C 7, 2, #16.

  17. Replication in ML Reproducibility Challenge 2020 (Python 3) | 10.5281/zenodo.4839595 | PDF | Code | Review | BibTeX
    Deprez, H.L. gezegd, Rijsdijk, G., Rooij, B. de, and Zwerink, W. 2021. [Re] Reproducing ’Identifying through flows for recovering latent representations.’ ReScience C 7, 2, #17.

  18. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4835278 | PDF | Code | Review | BibTeX
    Balsells Rodas, C., Canal Anton, O., and Taschin, F. 2021. [Re] Hamiltonian Generative Networks. ReScience C 7, 2, #18.

  19. Replication in ML Reproducibility Challenge 2020 (python) | 10.5281/zenodo.4835356 | PDF | Code | Data | BibTeX
    Schneider, M. and Körner, M. 2021. [Re] Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-Attention. ReScience C 7, 2, #19.

  20. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4835431 | PDF | Code | Review | BibTeX
    Sheverdin, A., Knijff, A., Corten, N., and Lange, G. 2021. [Re] Reproducibility report of "Interpretable Complex-Valued Neural Networks for Privacy Protection". ReScience C 7, 2, #20.

  21. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4835564 | PDF | Code | Review | BibTeX
    Sundar, V. and Dwaraknath, R.V. 2021. [Re] Rigging the Lottery: Making All Tickets Winners. ReScience C 7, 2, #21.

  22. Replication in ML Reproducibility Challenge 2020 (Python) | 10.5281/zenodo.4835592 | PDF | Code | Review | BibTeX
    Bouwman, P., Li, Y., Weerd, R. van der, and Verhoef, F. 2021. [Re] Reproducibility study - Does enforcing diversity in hidden states of LSTM-Attention models improve transparency? ReScience C 7, 2, #22.

  23. Replication in ML Reproducibility Challenge 2020 (python) | 10.5281/zenodo.4835600 | PDF | Code | Review | BibTeX
    Verhoeven, I., Chen, X., Hu, Q., and Holubar, M. 2021. [Re] Replication Study of ’Generative causal explanations of black-box classifiers.’ ReScience C 7, 2, #23.

  24. Editorial | 10.5281/zenodo.4833117 | PDF | BibTeX
    Sinha, K., Dodge, J., Luccioni, S., Forde, J.Z., Stojnic, R., and Pineau, J. 2021. ML Reproducibility Challenge 2020. ReScience C 7, 2, #1.

Issue 1

  1. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.5718075 | PDF | Code | Review | BibTeX
    Sankar, R., Thou, N., Rougier, N.P., and Leblois, A. 2021. [Re] A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity. ReScience C 7, 1, #11.

  2. Replication in Computational Biology (Julia) | 10.5281/zenodo.5722853 | PDF | Code | Review | BibTeX
    Dhane, F., Soeharjono, S., Stern, K., MacDonald, A., and Poisot, T. 2021. [Re] The Evolution of Virulence in Pathogens with Vertical and Horizontal Transmission. ReScience C 7, 1, #10.

  3. Replication in Computational Neuroscience (Python and Brian 2) | 10.5281/zenodo.5657320 | PDF | Code | Review | BibTeX
    Carvalho, T.T.A., Domingos, L.B., Shimoura, R.O., et al. 2021. [Re] Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala. ReScience C 7, 1, #9.

  4. Replication in Neuroscience (Python) | 10.5281/zenodo.5379631 | PDF | Code | Data | Review | BibTeX
    Paul, T.E. and Bourdenx, M. 2021. [Re] Spread of alpha-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. ReScience C 7, 1, #8.

  5. Replication in Computational Fluid Dynamics (C++) | 10.5281/zenodo.5234931 | PDF | Code | Review | BibTeX
    Mesnard, O. and Barba, L.A. 2021. [Re] Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates. ReScience C 7, 1, #7.

  6. Editorial | 10.5281/zenodo.5217602 | PDF | Code | Review | BibTeX
    Varma, M. and Prabhu, N. 2021. [Re] On the Relationship between Self-Attention and Convolutional Layers. ReScience C 7, 1, #6.

  7. Replication in Ecology (R) | 10.5281/zenodo.5006005 | PDF | Code | Data | BibTeX
    Boersch-Supan, P.H. 2021. [Re] Modeling Insect Phenology Using Ordinal Regression and Continuation Ratio Models. ReScience C 7, 1, #5.

  8. Replication in Algorithmics (C++) | 10.5281/zenodo.4836230 | PDF | Code | Review | BibTeX
    Lécuyer, F., Danisch, M., and Tabourier, L. 2021. [Re] Speedup Graph Processing by Graph Ordering. ReScience C 7, 1, #3.

  9. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.4655870 | PDF | Code | Review | BibTeX
    Boraud, T. and Strock, A. 2021. [Re] A Neurodynamical Model for Working Memory. ReScience C 7, 1, #1.

  10. Replication in Game Theory (Python 3) | 10.5281/zenodo.4646680 | PDF | Code | Review | BibTeX
    Geoffroy, F. 2021. [Re] Assortative matching and search. ReScience C 7, 1, #2.

Volume 6 (2020)

Issue 3

  1. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.4461767 | PDF | Code | Review | BibTeX
    Torre-Ortiz, C. de la and Nioche, A. 2021. [Re] Neural Network Model of Memory Retrieval. ReScience C 6, 3, #8.

  2. Replication in Reinforcement Learning (python) | 10.5281/zenodo.4242943 | PDF | Code | Review | BibTeX
    Brückner, L. and Nioche, A. 2020. [Re] Faster Teaching via POMDP Planning. ReScience C 6, 3, #7.

  3. Replication in Computational Neuroscience (Julia) | 10.5281/zenodo.4139359 | PDF | Code | Review | BibTeX
    Davies, I. and Eglen, S. 2020. [Re] The principal components of natural images. ReScience C 6, 3, #6.

  4. Replication in Ecology (julia) | 10.5281/zenodo.4022518 | PDF | Code | Review | BibTeX
    Dansereau, G., Banville, F., Basque, E., MacDonald, A., and Poisot, T. 2020. [Re] Chaos in a Three-Species Food Chain. ReScience C 6, 3, #5.

  5. Replication in Neuroscience (Matlab) | 10.5281/zenodo.4022361 | PDF | Code | Review | BibTeX
    Hentschke, H. 2020. [Re] Hippocampal Phase-Amplitude Coupling unearthed again. ReScience C 6, 3, #3.

  6. Replication in Computer Science | 10.5281/zenodo.3885793 | PDF | Code | Review | BibTeX
    Mahmoudian, S. 2020. [Re] Measures for investigating the contextual modulation of information transmission. ReScience C 6, 3, #2.

  7. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.3842360 | PDF | Code | Review | BibTeX
    Upshall, M. and Shifman, A.R. 2020. [Re] Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons. ReScience C 6, 3, #1.

Issue 2 (NeurIPS 2019 Reproducibility Challenge)

  1. Editorial | 10.5281/zenodo.3818627 | PDF | BibTeX
    Sinha, K., Pineau, J., Forde, J., Ke, R.N., and Larochelle, H. 2020. NeurIPS 2019 Reproducibility Challenge. ReScience C 6, 2, #11.

  2. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818607 | PDF | Code | Review | BibTeX
    Nayak, N., Raj, V., and Kalyani, S. 2020. [Re] A comprehensive study on binary optimizer and its applicability. ReScience C 6, 2, #9.

  3. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818609 | PDF | Code | Review | BibTeX
    Matosevic, A., Hein, E., and Nuzzo, F. 2020. [Re] Generative Modeling by Estimating Gradients of the Data Distribution. ReScience C 6, 2, #8.

  4. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818613 | PDF | Code | Review | BibTeX
    Liljefors, F., Sorkhei, M., and Broomé, S. 2020. [Re] Unsupervised Scalable Representation Learning for Multivariate Time Series. ReScience C 6, 2, #6.

  5. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818617 | PDF | Code | Review | BibTeX
    Kviman, O., Nilsson, L., and Larsson, M. 2020. [Re] Tensor Monte Carlo: Particle Methods for the GPU Era. ReScience C 6, 2, #5.

  6. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818621 | PDF | Code | Review | BibTeX
    Garg, A. and Kagi, S.S. 2020. [Re] Hamiltonian Neural Networks. ReScience C 6, 2, #3.

  7. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818623 | PDF | Code | BibTeX
    Ferles, A., Nöu, A., and Valavanis, L. 2020. [Re] Zero-Shot Knowledge Transfer via Adversarial Belief Matching. ReScience C 6, 2, #2.

  8. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818611 | PDF | Code | Review | BibTeX
    Liu, Y., Xu, J., and Pan, Y. 2020. [Re] When to Trust Your Model: Model-Based Policy Optimization. ReScience C 6, 2, #7.

  9. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818625 | PDF | Code | Review | BibTeX
    Alacchi, G., Lam, G., and Perreault-Lafleur, C. 2020. [Re] Unsupervised Representation Learning in Atari. ReScience C 6, 2, #1.

  10. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818619 | PDF | Code | Review | BibTeX
    Gohil, V., Narayanan, S.D., and Jain, A. 2020. [Re] One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers. ReScience C 6, 2, #4.

  11. Replication in NeurIPS 2019 Reproducibility Challenge (Python) | 10.5281/zenodo.3818605 | PDF | Code | Review | BibTeX
    Singh, A. and Bay, A. 2020. [Re] Improved Calibration and Predictive Uncertainty for Deep Neural Networks. ReScience C 6, 2, #10.

Issue 1 (Ten Years Reproducibility Challenge)

  1. Replication in Computer Science (C) | 10.5281/zenodo.10275726 | PDF | Code | Review | BibTeX
    Legrand, A. and Velho, P. 2023. [Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework. ReScience C 6, 1, #20.

  2. Replication in Computational Neuroscience (R) | 10.5281/zenodo.5347786 | PDF | Code | Review | BibTeX
    Eglen, S.J. 2021. [Re] Spatial constraints underlying the retinal mosaics of two types of horizontal cells in cat and macaque. ReScience C 6, 1, #22.

  3. Reproduction in Earth sciences (R) | 10.5281/zenodo.4617894 | PDF | Code | Data | Review | BibTeX
    Bond-Lamberty, B. 2021. [Re] Drivers of evapotranspiration from boreal wildfires. ReScience C 6, 1, #21.

  4. Replication in Computational Neuroscience (C) | 10.5281/zenodo.4543356 | PDF | Code | Review | BibTeX
    Leblois, A. 2021. [Re] Reproduction of the normal and pathological dynamics in the basal ganglia-thalamo-cortical network. ReScience C 6, 1, #19.

  5. Replication in Discrete Mathematics (C) | 10.5281/zenodo.4242972 | PDF | Code | Data | Review | BibTeX
    Enge, A. 2020. [Re] Volume computation for polytopes: Vingt ans après. ReScience C 6, 1, #17.

  6. Reproduction in Biology (SAS) | 10.5281/zenodo.4290512 | PDF | Code | Review | BibTeX
    Barnett, A. 2020. [Rp] Estimating trends and seasonality in coronary heart disease. ReScience C 6, 1, #18.

  7. Reproduction in Pattern Recognition (Java) | 10.5281/zenodo.4091742 | PDF | Code | Data | Review | BibTeX
    Weinman, J. 2020. [Rp] Reproducing "Typographical Features for Scene Text Recognition". ReScience C 6, 1, #.

  8. Reproduction in Ecology (C, R) | 10.5281/zenodo.4081202 | PDF | Code | Review | BibTeX
    Boettiger, C. 2020. [Rp] Fluctuation domains in adaptive evolution. ReScience C 6, 1, #15.

  9. Reproduction in Computational Neuroscience (Hoc) | 10.5281/zenodo.3972130 | PDF | Code | Review | BibTeX
    Davison, A.P. 2020. [Rp] Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. ReScience C 6, 1, #14.

  10. Reproduction in Aquatic Science (Pascal) | 10.5281/zenodo.3996198 | PDF | Data | Review | BibTeX
    Silberbauer, M. 2020. Re ReScience challenge: Geographical Trends in the Water Chemistry of Wetlands in the South-Western Cape Province, South Africas. ReScience C 6, 1, #13.

  11. Reproduction in Astronomy (fortran) | 10.5281/zenodo.3956058 | PDF | Code | Data | Review | BibTeX
    Roukema, B.F. 2020. [¬Rp] Reproducibility of ’Poincaré dodecahedral space parameter estimates.’ ReScience C 6, 1, #11.

  12. Reproduction in Genetics (R) | 10.5281/zenodo.3959516 | PDF | Code | Data | BibTeX
    Broman, K.W. 2020. [Rp] Reproducibility report: Identifying essential genes by mutagenesis. ReScience C 6, 1, #12.

  13. Reproduction in Physics (Fortran) | 10.5281/zenodo.3922195 | PDF | Code | Review | BibTeX
    Maggi, S. 2020. [Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction. ReScience C 6, 1, #10.

  14. Reproduction in Computational Mechanics (C++) | 10.5281/zenodo.3901241 | PDF | Code | Review | BibTeX
    Pantalé, O. 2020. [Rp] Parallelization of an object-oriented FEM dynamics code. ReScience C 6, 1, #8.

  15. Reproduction in Fault Tolerance (C) | 10.5281/zenodo.3886739 | PDF | Code | Review | BibTeX
    Courtès, L. 2020. [Re] Storage Tradeoffs in a Collaborative Backup Service for Mobile Devices. ReScience C 6, 1, #6.

  16. Reproduction in Fluid dynamics (Fortran77) | 10.5281/zenodo.3889694 | PDF | Code | Review | BibTeX
    Hinsen, K. 2020. [¬Rp] Stokes drag on conglomerates of spheres. ReScience C 6, 1, #7.

  17. Reproduction in Computer Science (Applesoft Basic) | 10.5281/zenodo.3886628 | PDF | Code | BibTeX
    Rougier, N.P. 2020. [Rp] LOUPE. ReScience C 6, 1, #3.

  18. Reproduction in Biophysics (Python) | 10.5281/zenodo.3886447 | PDF | Code | Review | BibTeX
    Hinsen, K. 2020. [Rp] Structural flexibility in proteins - impact of the crystal environment. ReScience C 6, 1, #5.

  19. Reproduction in Biophysics (Mathematica) | 10.5281/zenodo.3886412 | PDF | Code | Review | BibTeX
    Robert, C.H. 2020. [Rp] Reproducibility report: Estimating friction coefficients of mixed globular/chain molecules, such as protein/DNA complexes. [Biophys J 69, 840-848 (1995)]. ReScience C 6, 1, #4.

  20. Reproduction in Analytical Chemistry (FORTRAN77) | 10.5281/zenodo.3904595 | PDF | Code | Review | BibTeX
    Delsuc, M.-A. 2020. [Rp] Gifa V.4: A complete package for NMR data set processing. ReScience C 6, 1, #9.

  21. Reproduction in Parallel Programming (OCaml) | 10.5281/zenodo.4041602 | PDF | Code | Review | BibTeX
    Di Cosmo, R. and Danelutto, M. 2020. [Rp] Reproducing and replicating the OCamlP3l experiment. ReScience C 6, 1, #2.

  22. Reproduction in Chemical Physics (Fortran) | 10.5281/zenodo.3630224 | PDF | Code | Review | BibTeX
    McBane, G.C. 2020. [Rp] Reproduction of interaction second virial coefficient calculation for H_2–CO interactions [J. Chem. Phys. vol. 112, 4417 (2000)]. ReScience C 6, 1, #1.

Volume 5 (2019)

Issue 3

  1. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.3538217 | PDF | Code | Review | BibTeX
    Larisch, R. 2019. [Re] Connectivity reflects coding a model of voltage-based STDP with homeostasis. ReScience C 5, 3, #2.

  2. Letter in Machine Learning (c++) | 10.5281/zenodo.3528175 | PDF | Code | Review | BibTeX
    Sukhoy, V. and Stoytchev, A. 2019. Eliminating the Variability of Cross-Validation Results with LIBLINEAR due to Randomization and Parallelization. ReScience C 5, 3, #1.

  3. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.3545905 | PDF | Code | Review | BibTeX
    Bock, P. and Alexandre, F. 2019. [Re] The Wisconsin Card Sorting Test: Theoretical analysis and modeling in a neuronal network. ReScience C 5, 3, #3.

Issue 2 (ICLR Reproducibility Challenge 2019)

  1. Editorial | 10.5281/zenodo.3158244 | PDF | Review | BibTeX
    Pineau, J., Sinha, K., Fried, G., Ke, R.N., and Larochelle, H. 2019. ICLR Reproducibility Challenge 2019. ReScience C 5, 2, #5.

  2. Replication in Machine Learning (Python) | 10.5281/zenodo.3160540 | PDF | Code | Review | BibTeX
    Devos, A., Chatel, S., and Grossglauser, M. 2019. [Re] Meta-learning with differentiable closed-form solvers. ReScience C 5, 2, #1.

  3. Replication in Machine Learning (Python) | 10.5281/zenodo.3161734 | PDF | Code | Review | BibTeX
    Fuente, A.D. la and Aduviri, R. 2019. [Re] Variational Sparse Coding. ReScience C 5, 2, #2.

  4. Replication in Machine Learning (Python) | 10.5281/zenodo.3162890 | PDF | Code | Review | BibTeX
    Bardi, F., von Baussnern, S., and Gjiriti, E. 2019. [Re] Learning Neural PDE Solvers with Convergence Guarantees ICLR Reproducibility Challenge 2019. ReScience C 5, 2, #3.

  5. Replication in Machine Learning (python) | 10.5281/zenodo.3162114 | PDF | Code | Review | BibTeX
    Didolkar, A. 2019. [Re] h-detach: Modifying the LSTM gradient towards better optimization. ReScience C 5, 2, #4.

Issue 1

  1. Replication in Ecology (Python) | 10.5281/zenodo.3234524 | PDF | Code | Review | BibTeX
    Etherington, T.R. and Lieske, D.J. 2019. [Re] Resampling methods for evaluating classification accuracy of wildlife habitat models. ReScience C 5, 1, #4.

  2. Editorial | 10.5281/zenodo.3069619 | PDF | BibTeX
    Hinsen, K. and Rougier, N.P. 2019. ReScience (R)evolution. ReScience C 5, 1, #3.

  3. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.2611252 | PDF | Code | Review | BibTeX
    Tennøe, S., Hodne, K., Haug, T.M., Weltzien, F.-A., Einevoll, G.T., and Halnes, G. 2019. [Re] Fast-Activating Voltage- and Calcium-Dependent Potassium (BK) Conductance Promotes Bursting in Pituitary Cells: A Dynamic Clamp Study. ReScience 5, 1, #2.

  4. Replication in Computational Ecology (Julia) | 10.5281/zenodo.2598793 | PDF | Code | Review | BibTeX
    Caron, D., Lessard, V., Wu, Q., and Poisot, T. 2019. [Re] Insect natural enemies as regulating factors. ReScience 5, 1, #1.

Volume 4 (2018)

Issue 1

  1. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.1327348 | PDF | Code | Review | BibTeX
    Hathway, P. and Goodman, D.F.M. 2018. [Re] Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains. ReScience 4, 1, #6.

  2. Replication in Computational Ecology (Julia) | 10.5281/zenodo.1402676 | PDF | Code | Review | BibTeX
    Poisot, T. 2018. [Re] On the coexistence of specialists and generalists. ReScience 4, 1, #7.

  3. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.1289889 | PDF | Code | Review | BibTeX
    Bavard, S. and Théro, H. 2018. [Re] Adaptive properties of differential learning rates for positive and negative outcomes. ReScience 4, 1, #5.

  4. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.1246659 | PDF | Code | Review | BibTeX
    Cazé, R., Stimberg, M., and Girard, B. 2018. [Re] Non-additive coupling enables propagation of synchronous spiking activity in purely random networks. ReScience 4, 1, #1.

  5. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.1244116 | PDF | Code | Review | BibTeX
    Shimoura, R.O., Kamij, N.L., Pena, R.F.O., et al. 2018. [Re] The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. ReScience 4, 1, #2.

  6. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.1241004 | PDF | Code | Review | BibTeX
    Senden, M., Schuecker, J., Hahne, J., Diesmann, M., and Goebel, R. 2018. [Re] A neural model of the saccade generator in the reticular formation. ReScience 4, 1, #3.

  7. Replication in Computational Biology (Python) | 10.5281/zenodo.1254629 | PDF | Code | Review | BibTeX
    Mondeel, T.D.G.A., Ogundipe, V., and Westerhoff, H.V. 2018. [Re] Predicting metabolic biomarkers of human inborn errors of metabolism. ReScience 4, 1, #4.

Volume 3 (2017)

Issue 1

  1. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.1003214 | PDF | Code | Review | BibTeX
    Detorakis, G. 2017. [Re] A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors. ReScience 3, 1, #7.

  2. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.890901 | PDF | Code | Review | BibTeX
    Diem, A.K. 2017. [Re] A bidirectional model for communication in the neurovascular unit. ReScience 3, 1, #9.

  3. Replication in Computational Evolution (R) | 10.5281/zenodo.890884 | PDF | Code | Review | BibTeX
    Stojić, H. 2017. [Re] How learning can guide evolution. ReScience 3, 1, #8.

  4. Replication in Game Theory (Python) | 10.5281/zenodo.847732 | PDF | Code | Review | BibTeX
    Stollmeier, F. 2017. [Re] A simple rule for the evolution of cooperation on graphs and social networks. ReScience 3, 1, #5.

  5. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.854616 | PDF | Code | Review | BibTeX
    Metzner, C. 2017. [Re] Modeling GABA Alterations in Schizophrenia: A Link Between Impaired Inhibition and Gamma and Beta Auditory Entrainment. ReScience 3, 1, #6.

  6. Replication in Computer Graphics (Python) | 10.5281/zenodo.802285 | PDF | Code | Data | Review | BibTeX
    Rougier, N.P. 2017. [Re] Weighted Voronoi Stippling. ReScience 3, 1, #4.

  7. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.583814 | PDF | Code | Review | BibTeX
    Rostami, V., Ito, J., Denker, M., and Grün, S. 2017. [Re] Spike Synchronization and Rate Modulation Differentially Involved in Motor Cortical Function. ReScience 3, 1, #3.

  8. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.495237 | PDF | Code | Review | BibTeX
    Henriques, R.N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E.T., and Correia, M.M. 2017. [Re] Optimization of a free water elimination two-compartment model for diffusion tensor imaging. ReScience 3, 1, #2.

  9. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.254145 | PDF | Code | Review | BibTeX
    Shifman, A. 2017. [Re] Ionic Current Model of a Hypoglossal Motoneuron. ReScience 3, 1, #1.

Volume 2 (2016)

Issue 1

  1. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.200334 | PDF | Code | Review | BibTeX
    Masson, E.L. and Alexandre, F. 2016. [Re] How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks. ReScience 2, 1, #7.

  2. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.159545 | PDF | Code | Review | BibTeX
    Vitay, J. 2016. [Re] Robust timing and motor patterns by taming chaos in recurrent neural networks. ReScience 2, 1, #5.

  3. Replication in Computational Neurosience (Python) | 10.5281/zenodo.161526 | PDF | Code | Review | BibTeX
    Maksimov, A., Albada, S.J. van, and Diesmann, M. 2016. [Re] Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. ReScience 2, 1, #6.

  4. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.61697 | PDF | Code | Review | BibTeX
    Detorakis, G. 2016. [Re] Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. ReScience 2, 1, #4.

  5. Replication in Computational Ecology (R) | 10.5281/zenodo.50213 | PDF | Code | Review | BibTeX
    Petchey, O., Plebani, M., and Pennekamp, F. 2016. [Re] Chaos in a long-term experiment with a plankton community. ReScience 2, 1, #3.

  6. Replication in Computational Ecology (R) | 10.5281/zenodo.47146 | PDF | Code | Review | BibTeX
    Stachelek, J. 2016. [Re] Least-cost modelling on irregular landscape graphs. ReScience 2, 1, #2.

  7. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.45852 | PDF | Code | Review | BibTeX
    Viejo, G., Girard, B., and Khamassi, M. 2016. [Re] Speed/accuracy trade-off between the habitual and the goal-directed process. ReScience 2, 1, #1.

Volume 1 (2015)

Issue 1

  1. Replication in Computational Neuroscience (Python) | 10.5281/zenodo.27944 | PDF | Code | Review | BibTeX
    Topalidou, M. and Rougier, N.P. 2015. [Re] Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. ReScience 1, 1, #1.