Contents
- Under review
- Volume 9 (2023): 50 article(s)
- Volume 8 (2022): 54 article(s)
- Volume 7 (2021): 34 article(s)
- Volume 6 (2020): 40 article(s)
- Volume 5 (2019): 12 article(s)
- Volume 4 (2018): 7 article(s)
- Volume 3 (2017): 9 article(s)
- Volume 2 (2016): 7 article(s)
- Volume 1 (2015): 1 article(s)
Under review
See https://github.com/ReScience/submissions/issues
Volume 9 (2023)
Issue 1
-
Replication
in ecology
(R)
| 10.5281/zenodo.10371655
| PDF
| Code
| Review
| BibTeX
Doyen, G., Picoche, C., and Barraquand, F. 2023. [Re] Biodiversity of plankton by species oscillations and chaos. ReScience C 9, 1, #4.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.10257800
| PDF
| Code
| Data
| Review
| BibTeX
Lima, V., Shimoura, R.O., Kamiji, N.L., Battaglia, D., and Roque, A.C. 2023. [Re] Inter-areal Balanced Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate Cortex. ReScience C 9, 1, #3.
-
Replication
in Education Policy
(Python)
| 10.5281/zenodo.10255347
| PDF
| Code
| Review
| BibTeX
Allard, T., Béziaud, L., and Gambs, S. 2023. [ Re]Simulating socioeconomic-based affirmative action. ReScience C 9, 1, #2.
-
Replication
in Computer Vision
(Python)
| 10.5281/zenodo.7800679
| PDF
| Code
| Data
| Review
| BibTeX
Lemmens, J., Jancura, P., Dubbelman, G., and Elrofai, H. 2023. [Re] Object Detection Meets Knowledge Graphs. ReScience C 9, 1, #1.
Issue 2
-
Editorial
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8200058
| PDF
| BibTeX
Sinha, K., Bleeker, M., Bhargav, S., et al. 2023. ML Reproducibility Challenge 2022. ReScience C 9, 2, #46.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173652
| PDF
| Code
| Review
| BibTeX
Erkol, M., Kınlı, F., Özcan, B., and Kıraç, F. 2023. [Re] Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization. ReScience C 9, 2, #2.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173654
| PDF
| Code
| Review
| BibTeX
McLeish, S. and Tran-Thanh, L. 2023. [Re] End-to-end Algorithm Synthesis with Recurrent Networks: Logical Extrapolation Without Overthinking. ReScience C 9, 2, #3.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173656
| PDF
| Code
| Review
| BibTeX
Langezaal, E.R., Belleman, J., Veenboer, T., and Noorthoek, J. 2023. [Re] Label-Free Explainability for Unsupervised Models. ReScience C 9, 2, #4.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173658
| PDF
| Code
| Review
| BibTeX
Brivio, M. and Çöltekin, Ç. 2023. [Re] Exploring the Representation of Word Meanings in Context. ReScience C 9, 2, #5.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173662
| PDF
| Code
| Review
| BibTeX
Marini, L., Nabeel, M., and Loiko, A. 2023. [Re] Intriguing Properties of Contrastive Losses. ReScience C 9, 2, #6.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173664
| PDF
| Code
| Review
| BibTeX
Žontar, L. 2023. [Re] Bandit Theory and Thompson Sampling-guided Directed Evolution for Sequence Optimization. ReScience C 9, 2, #7.
-
Replication
in ML Reproducibility Challenge 2022
(python, bash)
| 10.5281/zenodo.8173666
| PDF
| Code
| Review
| BibTeX
Yuan, J. and Le-Phuoc, D. 2023. [Re] Hypergraph-Induced Semantic Tuplet Loss for Deep Metric Learning. ReScience C 9, 2, #8.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173668
| PDF
| Code
| Review
| BibTeX
Špendl, M. and Pirc, K. 2023. [Re] Easy Bayesian Transfer Learning with Informative Priors. ReScience C 9, 2, #9.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173672
| PDF
| Code
| Review
| BibTeX
Dubbeldam, E., Eijpe, A., Ruthardt, J., and Sasse, R. 2023. [Re] On the Reproducibility of CartoonX. ReScience C 9, 2, #10.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173674
| PDF
| Code
| Review
| BibTeX
Pariza, V., Pal, A., Pawar, M., and Faber, Q.S. 2023. [Re] Reproducibility Study of “Label-Free Explainability for Unsupervised Models.” ReScience C 9, 2, #11.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173678
| PDF
| Code
| Data
| Review
| BibTeX
Morita, K. 2023. [Re] FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles. ReScience C 9, 2, #12.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173680
| PDF
| Code
| Review
| BibTeX
Buchner, V.L., Schutte, P.O.O., Allal, Y.B., and Ahadi, H. 2023. [Re] Fairness Guarantees under Demographic Shift. ReScience C 9, 2, #13.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173682
| PDF
| Code
| Review
| BibTeX
Camara, P., Kloos, M., Kyrmanidi, V., Kluska, A., Terlou, R., and Krause, L. 2023. [Re] DialSummEval - Evaluation of automatic summarization evaluation metrics. ReScience C 9, 2, #14.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173686
| PDF
| Code
| Review
| BibTeX
Don, M., Chatterji, S., Kapralova, M., and Amaudruz, R. 2023. [Re] On the Reproducibility of "FairCal: Fairness Calibration for Face Verification". ReScience C 9, 2, #15.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173688
| PDF
| Code
| Review
| BibTeX
Garcarz, S., Giorkatzi, A., Ivășchescu, A., and Pîslar, T.-M. 2023. [Re] Reproducibility Study: Label-Free Explainability for Unsupervised Models. ReScience C 9, 2, #16.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173692
| PDF
| Code
| Review
| BibTeX
Martorella, T., Contreras, H.M.R., and García, D.C. 2023. [Re] Numerical influence of ReLU’(0) on backpropagation. ReScience C 9, 2, #17.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8206607
| PDF
| Code
| Review
| BibTeX
Agafonov, D., Matthijsse, J., Nonkes, N., and Sande, Z. van de. 2023. [¬Re] A Reproducibility Case Study of “Fairness Guarantees under Demographic Shift.” ReScience C 9, 2, #18.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173696
| PDF
| Code
| Review
| BibTeX
Mohorčič, D. and Ocepek, D. 2023. [Re] Hierarchical Shrinkage: Improving the Accuracy and Interpretability of Tree-Based Methods. ReScience C 9, 2, #19.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173698
| PDF
| Code
| Review
| BibTeX
Hu, A., Ranum, O., Pozrikidou, C., and Zhou, M. 2023. [Re] Reproducibility study of Joint Multisided Exposure Fairness for Recommendation. ReScience C 9, 2, #20.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173703
| PDF
| Code
| Review
| BibTeX
Türk, M., Busser, L., Dijk, D. van, and Bosch, M.J.A. 2023. [Re] Exploring the Explainability of Bias in Image Captioning Models. ReScience C 9, 2, #21.
-
Replication
in ML Reproducibility Challenge 2022
(python)
| 10.5281/zenodo.8173705
| PDF
| Code
| Review
| BibTeX
Bikker, D., Kleuver, G. de, Hu, W., and Veenman, B. 2023. [¬Re] Reproducibility study of ‘Proto2Proto: Can you recognize the car, the way I do?’ ReScience C 9, 2, #22.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173707
| PDF
| Code
| Review
| BibTeX
Simoncini, W., Gogou, I., Lopes, M.F., and Kremer, R. 2023. [Re] Reproducibility Study of ”Focus On The Common Good: Group Distributional Robustness Follows.” ReScience C 9, 2, #23.
-
Replication
in ML Reproducibility Challenge 2022
(python)
| 10.5281/zenodo.8173711
| PDF
| Code
| Review
| BibTeX
Papp, G., Wagenbach, J., Vries, L.J. de, and Mather, N. 2023. [Re] Reproducibility study of ”Label-Free Explainability for Unsupervised Models.” ReScience C 9, 2, #24.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173713
| PDF
| Code
| Review
| BibTeX
Buis, E., Dijkstra, S., and Heijermans, B. 2023. [Re] Reproducibility study of “Explaining Deep Convolutional Neural Networks via Latent Visual-Semantic Filter Attention.” ReScience C 9, 2, #25.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173715
| PDF
| Code
| Data
| Review
| BibTeX
Baratov, F., Yüksel, G., Petcu, D., and Bakker, J. 2023. [Re] Reproducibility Study of "Quantifying Societal Bias Amplification in Image Captioning". ReScience C 9, 2, #26.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173717
| PDF
| Code
| Review
| BibTeX
Zila, E., Gerbscheid, J., Sträter, L., and Kretschmar, K. 2023. [Re] On the reproducibility of "CrossWalk: Fairness-Enhanced Node Representation Learning". ReScience C 9, 2, #27.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173719
| PDF
| Code
| Review
| BibTeX
Greven, J., Stallinga, S., and Seljee, Z. 2023. [Re] Reproducing FairCal: Fairness Calibration for Face Verification. ReScience C 9, 2, #28.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173721
| PDF
| Code
| Review
| BibTeX
Taslimi, S., Foeng, L.C.A., Kayal, P., Patra, A.P., and Patra, A.P. 2023. [Re] Reproducibility Study of ’CartoonX: Cartoon Explanations of Image Classifiers.’ ReScience C 9, 2, #29.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173725
| PDF
| Code
| Review
| BibTeX
Merk, D., Smit, D., Beukers, B., and Mendsuren, T. 2023. [Re] Reproducibility Study of ”Latent Space Smoothing for Individually Fair Representations.” ReScience C 9, 2, #30.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173729
| PDF
| Code
| Review
| BibTeX
Aillet, A. and Sondén, S. 2023. [Re] Variational Neural Cellular Automata. ReScience C 9, 2, #31.
-
Replication
in ML Reproducibility Challenge 2022
(python)
| 10.5281/zenodo.8173733
| PDF
| Code
| Review
| BibTeX
Benmerzoug, A. and Benito Delgado, M. de. 2023. [Re] If you like Shapley, then you’ll love the core. ReScience C 9, 2, #32.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173735
| PDF
| Code
| Review
| BibTeX
Livernoche, V. and Sujaya, V. 2023. [Re] A Reproduction of Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification. ReScience C 9, 2, #33.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173737
| PDF
| Code
| Review
| BibTeX
Cordaro, D., Cox, S., Ren, Y., and Yu, T. 2023. [¬Re] G-Mixup: Graph Data Augmentation for Graph Classification. ReScience C 9, 2, #34.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173739
| PDF
| Code
| Review
| BibTeX
Bose, P., Pandey, C.S., and Fund, F. 2023. [Re] Exploring the Role of Grammar and Word Choice in Bias Toward African American English (AAE) in Hate Speech Classification. ReScience C 9, 2, #35.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173741
| PDF
| Code
| Review
| BibTeX
Antequera, P., Gonzalez, E., Grasa, M., and Raaphorst, M. van. 2023. [Re] RELIC: Reproducibility and Extension on LIC metric in quantifying bias in captioning models. ReScience C 9, 2, #36.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173745
| PDF
| Code
| Review
| BibTeX
Kyrylov, V., Bedi, N.S., and Zang, Q. 2023. [Re] VAE Approximation Error: ELBO and Exponential Families. ReScience C 9, 2, #37.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173747
| PDF
| Code
| Review
| BibTeX
Moens, G.J., Witte, J. de, Göbel, T.P., and Oever, M. van den. 2023. [Re] CrossWalk Fairness-enhanced Node Representation Learning. ReScience C 9, 2, #38.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173749
| PDF
| Code
| Review
| BibTeX
Pantea, L. and Blahovici, A. 2023. [Re] CrossWalk: Fairness-enhanced Node Representation Learning. ReScience C 9, 2, #39.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173751
| PDF
| Code
| Review
| BibTeX
Charisoudis, A., Huth, S.E. von, and Jansson, E. 2023. [Re] Masked Autoencoders Are Small Scale Vision Learners: A Reproduction Under Resource Constraints. ReScience C 9, 2, #40.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173753
| PDF
| Code
| Review
| BibTeX
Mahlau, Y., Kayser, L., and Berg, L. 2023. [Re] On Explainability of Graph Neural Networks via Subgraph Explorations. ReScience C 9, 2, #41.
-
Replication
in ML Reproducibility Challenge 2022
(Python3)
| 10.5281/zenodo.8173755
| PDF
| Code
| Data
| Review
| BibTeX
Alexander, S., Ildus, S., and Evgeniy, S. 2023. [Re] "Towards Understanding Grokking". ReScience C 9, 2, #42.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173757
| PDF
| Code
| Data
| Review
| BibTeX
Moalla, S., Madeira, M., Riccio, L., and Lee, J. 2023. [Re] Reproducibility Study of Behavior Transformers. ReScience C 9, 2, #43.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173759
| PDF
| Code
| Review
| BibTeX
Sun, K., Williams, A., and Hupkes, D. 2023. [Re] A Replication Study of Compositional Generalization Works on Semantic Parsing. ReScience C 9, 2, #44.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173763
| PDF
| Code
| Review
| BibTeX
Lee, S.R. and Lee, S.B. 2023. [Re] Pure Noise to the Rescue of Insufficient Data. ReScience C 9, 2, #45.
-
Replication
in ML Reproducibility Challenge 2022
(Python)
| 10.5281/zenodo.8173650
| PDF
| Code
| Review
| BibTeX
Omeragić, E. and Đuranović, V. 2023. [Re] G-Mixup: Graph Data Augmentation for Graph Classification. ReScience C 9, 2, #1.
Volume 8 (2022)
Issue 2 (ML Reproducibility Challenge 2021)
-
Editorial
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574723
| PDF
| BibTeX
Sinha, K., Dodge, J., Luccioni, S., et al. 2022. ML Reproducibility Challenge 2021. ReScience C 8, 2, #48.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574625
| PDF
| Code
| Review
| BibTeX
Ankit, A., Ambekar, S., Varadharajan, B., and Alence, M. 2022. [Re] Counterfactual Generative Networks. ReScience C 8, 2, #2.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574629
| PDF
| Code
| Review
| BibTeX
Ashok, A. and Aekula, H. 2022. [Re] Does Self-Supervision Always Improve Few-Shot Learning? ReScience C 8, 2, #3.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574631
| PDF
| Code
| Review
| BibTeX
Athanasiadis, I., Moschovis, G., and Tuoma, A. 2022. [Re] Weakly-Supervised Semantic Segmentation via Transformer Explainability. ReScience C 8, 2, #4.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574635
| PDF
| Code
| Review
| BibTeX
Bagad, P., Hilders, P., Maas, J., and Goede, D. de. 2022. [Re] Reproducibility Study of “Counterfactual Generative Networks.” ReScience C 8, 2, #5.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574637
| PDF
| Code
| Review
| BibTeX
Boer, S. de, Cosma, R.A., Knobel, L., Koishekenov, Y., and Shaffrey, B. 2022. [Re] Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling. ReScience C 8, 2, #6.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574639
| PDF
| Code
| Review
| BibTeX
Brivio, M. and Çöltekin, Ç. 2022. [¬Re] Hate Speech Detection based on Sentiment Knowledge Sharing. ReScience C 8, 2, #7.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574641
| PDF
| Code
| Review
| BibTeX
Burger, M., Burg, K. ter, Titarsolej, S., and Khan, S.J. 2022. [Re] Reproducibility Study - SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition. ReScience C 8, 2, #8.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574643
| PDF
| Code
| Review
| BibTeX
Buvanesh, A. and Panwar, M. 2022. [Re] AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients. ReScience C 8, 2, #9.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574645
| PDF
| Code
| Review
| BibTeX
Dasu, V.A. and T.K., M.M. 2022. [Re] GANSpace: Discovering Interpretable GAN Controls. ReScience C 8, 2, #10.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574647
| PDF
| Code
| Review
| BibTeX
Drabent, K., Wijnja, S., Sluijter, T., and Bereda, K. 2022. [Re] Replication study of "Privacy-preserving Collaborative Learning". ReScience C 8, 2, #11.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574649
| PDF
| Code
| Review
| BibTeX
Džubur, B. 2022. [Re] A Cluster-based Approach for Improving Isotropy in Contextual Embedding Space. ReScience C 8, 2, #12.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574651
| PDF
| Code
| Review
| BibTeX
Eaton, E. and Naghavi, P. 2022. [Re] Reproduction and Extension of "Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation". ReScience C 8, 2, #13.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574653
| PDF
| Code
| Review
| BibTeX
Eijkelboom, F., Fokkema, M., Lau, A., and Verheijen, L. 2022. [Re] Reproduction Study of Variational Fair Clustering. ReScience C 8, 2, #14.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574655
| PDF
| Code
| Review
| BibTeX
Geijn, C. van de, Kyriacou, V., Papadopoulou, I., and Vasileiou, V. 2022. [Re] Explaining in Style: Training a GAN to explain a classifier in StyleSpace. None 8, 2, #15.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574657
| PDF
| Code
| Review
| BibTeX
Hardy, I. 2022. [Re] An Implementation of Fair Robust Learning. ReScience C 8, 2, #16.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574659
| PDF
| Code
| Data
| Review
| BibTeX
Höppe, T., Miszkurka, A., and Wilkman, D.B. 2022. [Re] Understanding Self-Supervised Learning Dynamics without Contrastive Pairs. ReScience C 8, 2, #17.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574661
| PDF
| Code
| Data
| Review
| BibTeX
Jiles, R. and Chakraborty, M. 2022. [Re] Domain Generalization using Causal Matching. ReScience C 8, 2, #18.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574663
| PDF
| Code
| Review
| BibTeX
Kirca, I.-A., Hamerslag, D., Baas, A., and Prent, J. 2022. [¬Re] Reproducibility Study of ’Exacerbating Algorithmic Bias through Fairness Attacks’ . ReScience C 8, 2, #19.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574665
| PDF
| Code
| Review
| BibTeX
Kolkman, G., Athmer, J., Labro, A., and Kulicki, M. 2022. [Re] Strategic classification made practical: reproduction. ReScience C 8, 2, #20.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574667
| PDF
| Code
| Review
| BibTeX
Bosch, E., Ettes, R., Korporaal, D., and Meer, G. van. 2022. [Re] Replication study of ’Explaining in Style: Training a GAN to explain a classifier in StyleSpace.’ None 8, 2, #21.
-
Replication
in ML Reproducibility Challenge 2021
(python)
| 10.5281/zenodo.6574669
| PDF
| Code
| Review
| BibTeX
Tafuro, M., Lombardo, A., Veljković, T.H., and Becker-Czarnetzki, L. 2022. [Re] Exacerbating Algorithmic Bias through Fairness Attacks. ReScience C 8, 2, #22.
-
Replication
in ML Reproducibility Challenge 2021
(R)
| 10.5281/zenodo.6574671
| PDF
| Code
| Review
| BibTeX
De Luisa, A. 2022. [Re] Thompson Sampling for Bandits with Clustered Arms. ReScience C 8, 2, #23.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574673
| PDF
| Code
| Review
| BibTeX
Mast, D. van der, Haddou, S.B., Chu, J., and Stefels, J. 2022. [Re] Replication Study of "Fairness and Bias in Online Selection". None 8, 2, #24.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574675
| PDF
| Code
| Review
| BibTeX
Chen, A., Matsumoto, S., and Varma, R.S. 2022. [Re] Projection-based Algorithm for Updating the TruncatedSVD of Evolving Matrices. ReScience C 8, 2, #25.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574677
| PDF
| Code
| Review
| BibTeX
Mehta, A., Uppal, K., Jadhav, K., Natarajan, M., Agrawal, M., and Chakravarty, D. 2022. [Re] Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation. ReScience C 8, 2, #26.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574679
| PDF
| Code
| Review
| BibTeX
Mikler, S. 2022. [Re] Reproducibility Study: Comparing Rewinding and Fine-tuning in Neural Network Pruning. ReScience C 8, 2, #27.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574681
| PDF
| Code
| Review
| BibTeX
Nalmpantis, A., Panagiotopoulos, A., Gkountouras, J., and Papakostas, K. 2022. [Re] Exacerbating Algorithmic Bias through Fairness Attacks. None 8, 2, #28.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574683
| PDF
| Code
| Data
| Review
| BibTeX
Neplenbroek, V., Perdijk, S., and Prins, V. 2022. [Re] Replication study of ’Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling.’ ReScience C 8, 2, #29.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574685
| PDF
| Code
| Review
| BibTeX
Galatolo, A. and Nilsson, A. 2022. [Re] Replicating and Improving GAN2Shape Through Novel Shape Priors and Training Steps. ReScience C 8, 2, #30.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574687
| PDF
| Code
| Review
| BibTeX
Panigrahi, S.S. and Patnaik, S. 2022. [Re] Value Alignment Verification. ReScience C 8, 2, #31.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574689
| PDF
| Code
| Review
| BibTeX
Petcu, R., Praat, P., Wijnen, J., and Rerres, M. 2022. [Re] Replication Study of "Fairness and Bias in Online Selection". ReScience C 8, 2, #32.
-
Replication
in ML Reproducibility Challenge 2021
(Python 3)
| 10.5281/zenodo.6574691
| PDF
| Code
| Review
| BibTeX
Peters, N., Crosbie, J., Hull, R. vant́, and Strampel, M. 2022. [¬Re] Reproducing ’Fair Selective Classification via Sufficiency.’ None 8, 2, #33.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574693
| PDF
| Code
| Review
| BibTeX
Ranjan, R., Bhakta, H., Jha, A., and Maheshwari, P. 2022. [Re] Differentiable Spatial Planning using Transformers. ReScience C 8, 2, #34.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574695
| PDF
| Code
| Review
| BibTeX
Rucks, N., Uelwer, T., and Harmeling, S. 2022. [Re] Solving Phase Retrieval With a Learned Reference. ReScience C 8, 2, #35.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574697
| PDF
| Code
| Review
| BibTeX
Sen, R., Sinha, S., Jha, A., and Maheshwari, P. 2022. [Re] Reproducibility Report: Contrastive Learning of Socially-aware Motion Representations. ReScience C 8, 2, #36.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574699
| PDF
| Code
| Review
| BibTeX
Shukla, A., Roy, S., Chawla, Y., et al. 2022. [Re] From goals, waypoints and paths to longterm human trajectory forecasting. ReScience C 8, 2, #37.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574701
| PDF
| Code
| Review
| BibTeX
Stropnik, V. and Oražem, M. 2022. [Re] Graph Edit Networks. ReScience C 8, 2, #38.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574703
| PDF
| Code
| Data
| Review
| BibTeX
Kljun, M., Teršek, M., and Vreš, D. 2022. [Re] Learning to count everything. ReScience C 8, 2, #39.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574705
| PDF
| Code
| Review
| BibTeX
Togt, J. van der, Tiyavorabun, L., Rosati, M., and Starace, G. 2022. [Re] Badder Seeds: Reproducing the Evaluation of Lexical Methods for Bias Measurement. ReScience C 8, 2, #40.
-
Replication
in ML Reproducibility Challenge 2021
(Python, Matlab)
| 10.5281/zenodo.6574707
| PDF
| Code
| Review
| BibTeX
Trojer, Ž. 2022. [Re] Transparent Object Tracking Benchmark. ReScience C 8, 2, #41.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574709
| PDF
| Code
| Review
| BibTeX
Vleuten, N. van der, Radusinović, T., Akkerman, R., and Reksoprodjo, M. 2022. [Re] Explaining in Style: Training a GAN to explain a classifier in StyleSpace. None 8, 2, #42.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574711
| PDF
| Code
| Review
| BibTeX
Shulev, V., Verhagen, P., Wang, S., and Zhuge, J. 2022. [Re] Replication Study of DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks. ReScience C 8, 2, #43.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574713
| PDF
| Code
| Review
| BibTeX
Warmerdam, A.T., Loerakker, L., Meijer, L., and Nissen, O. 2022. [Re] Privacy-preserving collaborative learning with automatic transformation search. ReScience C 8, 2, #44.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574715
| PDF
| Code
| Review
| BibTeX
Wilschut, R.I., Wiggers, T.P.A., Oort, R.S., and Orden, T.A. van. 2022. [Re] Robust Counterfactual Explanations on Graph Neural Networks. ReScience C 8, 2, #45.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574719
| PDF
| Code
| Review
| BibTeX
Yılmaz, D., Kınlı, F., Özcan, B., and Kıraç, F. 2022. [Re] Lifting 2D StyleGAN for 3D-Aware Face Generation. ReScience C 8, 2, #46.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574721
| PDF
| Code
| Review
| BibTeX
Zrimšek, U. 2022. [Re] Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction. ReScience C 8, 2, #47.
-
Replication
in ML Reproducibility Challenge 2021
(Python)
| 10.5281/zenodo.6574623
| PDF
| Code
| Review
| BibTeX
Ahmed, W. and Samuel, S. 2022. [Re] Nondeterminism and Instability in Neural Network Optimization. ReScience C 8, 2, #1.
Issue 1
-
Replication
in Social Psychology
(Python)
| 10.5281/zenodo.7484072
| PDF
| Code
| Review
| BibTeX
Wallrich, L. 2022. [Re] Groups of diverse problem-solvers outperform groups of highest-ability problem-solvers - most of the time. ReScience C 8, 1, #6.
-
Replication
in Biological Computing
(Octave)
| 10.5281/zenodo.6801765
| PDF
| Code
| Review
| BibTeX
Sant’Anna, G.B. de and Costa, M.F. 2022. [Re] A Multi-Functional Synthetic Gene Network. ReScience C 8, 1, #5.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.6573684
| PDF
| Code
| Review
| BibTeX
Misiek, T. and Khamassi, M. 2022. [Re] A general model of hippocampal and dorsal striatal learning and decision making. ReScience C 8, 1, #4.
-
Replication
in Ecology
(C++)
| 10.5281/zenodo.6546488
| PDF
| Code
| Review
| BibTeX
Picoche, C., Young, W.R., and Barraquand, F. 2022. [Re] Reproductive pair correlations and the clustering of organisms. ReScience C 8, 1, #3.
-
Replication
in Computational Neuroscience
(Python)
| https://doi.org/10.5281/zenodo.6484021
| PDF
| Code
| Review
| BibTeX
Gillard, T., Fix, J., and Dutech, A. 2022. [Re] Modeling habits as self-sustained patterns of sensorimotor behavior. ReScience C 8, 1, #2.
-
Replication
in Computer Science
(Python)
| 10.5281/zenodo.6255131
| PDF
| Code
| Review
| BibTeX
Maurel, D., Fillioux, J., and Gugenheim, D. 2022. [Re] Effective Program Debloating via Reinforcement Learning. ReScience C 8, 1, #1.
Volume 7 (2021)
Issue 2 (ML Reproducibility Challenge 2020)
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4835602
| PDF
| Code
| Review
| BibTeX
Verma, R., Wagemans, J.J.O., Dahal, P., and Elfrink, A. 2021. [Re] Explaining Groups of Points in Low-Dimensional Representations. ReScience C 7, 2, #24.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4833219
| PDF
| Code
| Data
| Review
| BibTeX
Albanis, G., Zioulis, N., Chatzitofis, A., Dimou, A., Zarpalas, D., and Daras, P. 2021. [Re] On end-to-end 6DoF object pose estimation and robustness to object scale. ReScience C 7, 2, #2.
-
Replication
in ML Reproducibility Challenge 2020
(python)
| 10.5281/zenodo.4833389
| PDF
| Code
| Review
| BibTeX
Arvind, M. and Mama, M. 2021. [Re] Neural Networks Fail to Learn Periodic Functions and How to Fix It. ReScience C 7, 2, #3.
-
Replication
in ML Reproducibility Challenge 2020
(python)
| 10.5281/zenodo.4833547
| PDF
| Code
| Review
| BibTeX
Teule, T., Reints, N., Gerges, C.A., and Baanders, P. 2021. [Re] Deep Fair Clustering for Visual Learning. ReScience C 7, 2, #4.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4833681
| PDF
| Code
| Review
| BibTeX
Garg, P., Singhal, L., and Sardana, A. 2021. [Re] Training Binary Neural Networks using the Bayesian Learning Rule. ReScience C 7, 2, #5.
-
Replication
in ML Reproducibility Challenge 2020
(Python 3)
| 10.5281/zenodo.4834146
| PDF
| Code
| Data
| Review
| BibTeX
Habacker, R., Harrison, A., Parisot, M., and Snijders, A. 2021. [Re] Reproducing Learning to Deceive With Attention-Based Explanations. ReScience C 7, 2, #6.
-
Replication
in ML Reproducibility Challenge 2020
(English)
| 10.5281/zenodo.4834242
| PDF
| Code
| Review
| BibTeX
Holdijk, L., Boon, M., Henckens, S., and Jong, L. de. 2021. [Re] Parameterized Explainer for Graph Neural Network. ReScience C 7, 2, #7.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4834352
| PDF
| Code
| Review
| BibTeX
Kim, S.S.Y., Zhang, S., Meister, N., and Russakovsky, O. 2021. [Re] Don’t Judge an Object by Its Context: Learning to Overcome Contextual Bias. ReScience C 7, 2, #8.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4834442
| PDF
| Code
| Review
| BibTeX
Li, C., Tu, R., and Zhang, H. 2021. [Re] Reimplementation of FixMatch and Investigation on Noisy (Pseudo) Labels and Confirmation Errors of FixMatch. ReScience C 7, 2, #9.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4834516
| PDF
| Code
| Review
| BibTeX
Liiv, T., Lennelöv, E., and Norén, A. 2021. [Re] A Reproduction of Ensemble Distribution Distillation. ReScience C 7, 2, #10.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4834610
| PDF
| Code
| Review
| BibTeX
Stephen, K. and Menon, V. 2021. [Re] Learning Memory Guided Normality for Anomaly Detection. ReScience C 7, 2, #11.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4834672
| PDF
| Code
| Review
| BibTeX
Menteş, S., Kınlı, F., Özcan, B., and Kıraç, F. 2021. [Re] Spatial-Adaptive Network for Single Image Denoising. ReScience C 7, 2, #12.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4834744
| PDF
| Code
| Review
| BibTeX
Mizrahi, D., Yüksel, O.K., and Kyzy, A.M. 2021. [Re] Can gradient clipping mitigate label noise? ReScience C 7, 2, #13.
-
Replication
in ML Reproducibility Challenge 2020
(python)
| 10.5281/zenodo.4834856
| PDF
| Code
| Review
| BibTeX
Kireev, K., Mohtashami, A., and Pajouheshgar, E. 2021. [Re] Warm-Starting Neural Network Training. ReScience C 7, 2, #14.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4834942
| PDF
| Code
| Review
| BibTeX
P, J.J. and Sardana, A. 2021. [Re] Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings. ReScience C 7, 2, #15.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4835056
| PDF
| Code
| Review
| BibTeX
Reijnaers, D.J.W., Pavert, D.B. van de, Scheuer, G., and Huang, L. 2021. [Re] Explaining Groups of Points in Low-Dimensional Representations. ReScience C 7, 2, #16.
-
Replication
in ML Reproducibility Challenge 2020
(Python 3)
| 10.5281/zenodo.4839595
| PDF
| Code
| Review
| BibTeX
Deprez, H.L. gezegd, Rijsdijk, G., Rooij, B. de, and Zwerink, W. 2021. [Re] Reproducing ’Identifying through flows for recovering latent representations.’ ReScience C 7, 2, #17.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4835278
| PDF
| Code
| Review
| BibTeX
Balsells Rodas, C., Canal Anton, O., and Taschin, F. 2021. [Re] Hamiltonian Generative Networks. ReScience C 7, 2, #18.
-
Replication
in ML Reproducibility Challenge 2020
(python)
| 10.5281/zenodo.4835356
| PDF
| Code
| Data
| BibTeX
Schneider, M. and Körner, M. 2021. [Re] Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-Attention. ReScience C 7, 2, #19.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4835431
| PDF
| Code
| Review
| BibTeX
Sheverdin, A., Knijff, A., Corten, N., and Lange, G. 2021. [Re] Reproducibility report of "Interpretable Complex-Valued Neural Networks for Privacy Protection". ReScience C 7, 2, #20.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4835564
| PDF
| Code
| Review
| BibTeX
Sundar, V. and Dwaraknath, R.V. 2021. [Re] Rigging the Lottery: Making All Tickets Winners. ReScience C 7, 2, #21.
-
Replication
in ML Reproducibility Challenge 2020
(Python)
| 10.5281/zenodo.4835592
| PDF
| Code
| Review
| BibTeX
Bouwman, P., Li, Y., Weerd, R. van der, and Verhoef, F. 2021. [Re] Reproducibility study - Does enforcing diversity in hidden states of LSTM-Attention models improve transparency? ReScience C 7, 2, #22.
-
Replication
in ML Reproducibility Challenge 2020
(python)
| 10.5281/zenodo.4835600
| PDF
| Code
| Review
| BibTeX
Verhoeven, I., Chen, X., Hu, Q., and Holubar, M. 2021. [Re] Replication Study of ’Generative causal explanations of black-box classifiers.’ ReScience C 7, 2, #23.
-
Editorial
| 10.5281/zenodo.4833117
| PDF
| BibTeX
Sinha, K., Dodge, J., Luccioni, S., Forde, J.Z., Stojnic, R., and Pineau, J. 2021. ML Reproducibility Challenge 2020. ReScience C 7, 2, #1.
Issue 1
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.5718075
| PDF
| Code
| Review
| BibTeX
Sankar, R., Thou, N., Rougier, N.P., and Leblois, A. 2021. [Re] A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity. ReScience C 7, 1, #11.
-
Replication
in Computational Biology
(Julia)
| 10.5281/zenodo.5722853
| PDF
| Code
| Review
| BibTeX
Dhane, F., Soeharjono, S., Stern, K., MacDonald, A., and Poisot, T. 2021. [Re] The Evolution of Virulence in Pathogens with Vertical and Horizontal Transmission. ReScience C 7, 1, #10.
-
Replication
in Computational Neuroscience
(Python and Brian 2)
| 10.5281/zenodo.5657320
| PDF
| Code
| Review
| BibTeX
Carvalho, T.T.A., Domingos, L.B., Shimoura, R.O., et al. 2021. [Re] Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala. ReScience C 7, 1, #9.
-
Replication
in Neuroscience
(Python)
| 10.5281/zenodo.5379631
| PDF
| Code
| Data
| Review
| BibTeX
Paul, T.E. and Bourdenx, M. 2021. [Re] Spread of alpha-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. ReScience C 7, 1, #8.
-
Replication
in Computational Fluid Dynamics
(C++)
| 10.5281/zenodo.5234931
| PDF
| Code
| Review
| BibTeX
Mesnard, O. and Barba, L.A. 2021. [Re] Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates. ReScience C 7, 1, #7.
-
Editorial
| 10.5281/zenodo.5217602
| PDF
| Code
| Review
| BibTeX
Varma, M. and Prabhu, N. 2021. [Re] On the Relationship between Self-Attention and Convolutional Layers. ReScience C 7, 1, #6.
-
Replication
in Ecology
(R)
| 10.5281/zenodo.5006005
| PDF
| Code
| Data
| BibTeX
Boersch-Supan, P.H. 2021. [Re] Modeling Insect Phenology Using Ordinal Regression and Continuation Ratio Models. ReScience C 7, 1, #5.
-
Replication
in Algorithmics
(C++)
| 10.5281/zenodo.4836230
| PDF
| Code
| Review
| BibTeX
Lécuyer, F., Danisch, M., and Tabourier, L. 2021. [Re] Speedup Graph Processing by Graph Ordering. ReScience C 7, 1, #3.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.4655870
| PDF
| Code
| Review
| BibTeX
Boraud, T. and Strock, A. 2021. [Re] A Neurodynamical Model for Working Memory. ReScience C 7, 1, #1.
-
Replication
in Game Theory
(Python 3)
| 10.5281/zenodo.4646680
| PDF
| Code
| Review
| BibTeX
Geoffroy, F. 2021. [Re] Assortative matching and search. ReScience C 7, 1, #2.
Volume 6 (2020)
Issue 3
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.4461767
| PDF
| Code
| Review
| BibTeX
Torre-Ortiz, C. de la and Nioche, A. 2021. [Re] Neural Network Model of Memory Retrieval. ReScience C 6, 3, #8.
-
Replication
in Reinforcement Learning
(python)
| 10.5281/zenodo.4242943
| PDF
| Code
| Review
| BibTeX
Brückner, L. and Nioche, A. 2020. [Re] Faster Teaching via POMDP Planning. ReScience C 6, 3, #7.
-
Replication
in Computational Neuroscience
(Julia)
| 10.5281/zenodo.4139359
| PDF
| Code
| Review
| BibTeX
Davies, I. and Eglen, S. 2020. [Re] The principal components of natural images. ReScience C 6, 3, #6.
-
Replication
in Ecology
(julia)
| 10.5281/zenodo.4022518
| PDF
| Code
| Review
| BibTeX
Dansereau, G., Banville, F., Basque, E., MacDonald, A., and Poisot, T. 2020. [Re] Chaos in a Three-Species Food Chain. ReScience C 6, 3, #5.
-
Replication
in Neuroscience
(Matlab)
| 10.5281/zenodo.4022361
| PDF
| Code
| Review
| BibTeX
Hentschke, H. 2020. [Re] Hippocampal Phase-Amplitude Coupling unearthed again. ReScience C 6, 3, #3.
-
Replication
in Computer Science
| 10.5281/zenodo.3885793
| PDF
| Code
| Review
| BibTeX
Mahmoudian, S. 2020. [Re] Measures for investigating the contextual modulation of information transmission. ReScience C 6, 3, #2.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.3842360
| PDF
| Code
| Review
| BibTeX
Upshall, M. and Shifman, A.R. 2020. [Re] Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons. ReScience C 6, 3, #1.
Issue 2 (NeurIPS 2019 Reproducibility Challenge)
-
Editorial
| 10.5281/zenodo.3818627
| PDF
| BibTeX
Sinha, K., Pineau, J., Forde, J., Ke, R.N., and Larochelle, H. 2020. NeurIPS 2019 Reproducibility Challenge. ReScience C 6, 2, #11.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818607
| PDF
| Code
| Review
| BibTeX
Nayak, N., Raj, V., and Kalyani, S. 2020. [Re] A comprehensive study on binary optimizer and its applicability. ReScience C 6, 2, #9.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818609
| PDF
| Code
| Review
| BibTeX
Matosevic, A., Hein, E., and Nuzzo, F. 2020. [Re] Generative Modeling by Estimating Gradients of the Data Distribution. ReScience C 6, 2, #8.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818613
| PDF
| Code
| Review
| BibTeX
Liljefors, F., Sorkhei, M., and Broomé, S. 2020. [Re] Unsupervised Scalable Representation Learning for Multivariate Time Series. ReScience C 6, 2, #6.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818617
| PDF
| Code
| Review
| BibTeX
Kviman, O., Nilsson, L., and Larsson, M. 2020. [Re] Tensor Monte Carlo: Particle Methods for the GPU Era. ReScience C 6, 2, #5.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818621
| PDF
| Code
| Review
| BibTeX
Garg, A. and Kagi, S.S. 2020. [Re] Hamiltonian Neural Networks. ReScience C 6, 2, #3.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818623
| PDF
| Code
| BibTeX
Ferles, A., Nöu, A., and Valavanis, L. 2020. [Re] Zero-Shot Knowledge Transfer via Adversarial Belief Matching. ReScience C 6, 2, #2.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818611
| PDF
| Code
| Review
| BibTeX
Liu, Y., Xu, J., and Pan, Y. 2020. [Re] When to Trust Your Model: Model-Based Policy Optimization. ReScience C 6, 2, #7.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818625
| PDF
| Code
| Review
| BibTeX
Alacchi, G., Lam, G., and Perreault-Lafleur, C. 2020. [Re] Unsupervised Representation Learning in Atari. ReScience C 6, 2, #1.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818619
| PDF
| Code
| Review
| BibTeX
Gohil, V., Narayanan, S.D., and Jain, A. 2020. [Re] One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers. ReScience C 6, 2, #4.
-
Replication
in NeurIPS 2019 Reproducibility Challenge
(Python)
| 10.5281/zenodo.3818605
| PDF
| Code
| Review
| BibTeX
Singh, A. and Bay, A. 2020. [Re] Improved Calibration and Predictive Uncertainty for Deep Neural Networks. ReScience C 6, 2, #10.
Issue 1 (Ten Years Reproducibility Challenge)
-
Replication
in Computer Science
(C)
| 10.5281/zenodo.10275726
| PDF
| Code
| Review
| BibTeX
Legrand, A. and Velho, P. 2023. [Re] Velho and Legrand (2009) - Accuracy Study and Improvement of Network Simulation in the SimGrid Framework. ReScience C 6, 1, #20.
-
Replication
in Computational Neuroscience
(R)
| 10.5281/zenodo.5347786
| PDF
| Code
| Review
| BibTeX
Eglen, S.J. 2021. [Re] Spatial constraints underlying the retinal mosaics of two types of horizontal cells in cat and macaque. ReScience C 6, 1, #22.
-
Reproduction
in Earth sciences
(R)
| 10.5281/zenodo.4617894
| PDF
| Code
| Data
| Review
| BibTeX
Bond-Lamberty, B. 2021. [Re] Drivers of evapotranspiration from boreal wildfires. ReScience C 6, 1, #21.
-
Replication
in Computational Neuroscience
(C)
| 10.5281/zenodo.4543356
| PDF
| Code
| Review
| BibTeX
Leblois, A. 2021. [Re] Reproduction of the normal and pathological dynamics in the basal ganglia-thalamo-cortical network. ReScience C 6, 1, #19.
-
Replication
in Discrete Mathematics
(C)
| 10.5281/zenodo.4242972
| PDF
| Code
| Data
| Review
| BibTeX
Enge, A. 2020. [Re] Volume computation for polytopes: Vingt ans après. ReScience C 6, 1, #17.
-
Reproduction
in Biology
(SAS)
| 10.5281/zenodo.4290512
| PDF
| Code
| Review
| BibTeX
Barnett, A. 2020. [Rp] Estimating trends and seasonality in coronary heart disease. ReScience C 6, 1, #18.
-
Reproduction
in Pattern Recognition
(Java)
| 10.5281/zenodo.4091742
| PDF
| Code
| Data
| Review
| BibTeX
Weinman, J. 2020. [Rp] Reproducing "Typographical Features for Scene Text Recognition". ReScience C 6, 1, #.
-
Reproduction
in Ecology
(C, R)
| 10.5281/zenodo.4081202
| PDF
| Code
| Review
| BibTeX
Boettiger, C. 2020. [Rp] Fluctuation domains in adaptive evolution. ReScience C 6, 1, #15.
-
Reproduction
in Computational Neuroscience
(Hoc)
| 10.5281/zenodo.3972130
| PDF
| Code
| Review
| BibTeX
Davison, A.P. 2020. [Rp] Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. ReScience C 6, 1, #14.
-
Reproduction
in Aquatic Science
(Pascal)
| 10.5281/zenodo.3996198
| PDF
| Data
| Review
| BibTeX
Silberbauer, M. 2020. Re ReScience challenge: Geographical Trends in the Water Chemistry of Wetlands in the South-Western Cape Province, South Africas. ReScience C 6, 1, #13.
-
Reproduction
in Astronomy
(fortran)
| 10.5281/zenodo.3956058
| PDF
| Code
| Data
| Review
| BibTeX
Roukema, B.F. 2020. [¬Rp] Reproducibility of ’Poincaré dodecahedral space parameter estimates.’ ReScience C 6, 1, #11.
-
Reproduction
in Genetics
(R)
| 10.5281/zenodo.3959516
| PDF
| Code
| Data
| BibTeX
Broman, K.W. 2020. [Rp] Reproducibility report: Identifying essential genes by mutagenesis. ReScience C 6, 1, #12.
-
Reproduction
in Physics
(Fortran)
| 10.5281/zenodo.3922195
| PDF
| Code
| Review
| BibTeX
Maggi, S. 2020. [Rp] Reproduction of Step width enhancement in a pulse-driven Josephson junction. ReScience C 6, 1, #10.
-
Reproduction
in Computational Mechanics
(C++)
| 10.5281/zenodo.3901241
| PDF
| Code
| Review
| BibTeX
Pantalé, O. 2020. [Rp] Parallelization of an object-oriented FEM dynamics code. ReScience C 6, 1, #8.
-
Reproduction
in Fault Tolerance
(C)
| 10.5281/zenodo.3886739
| PDF
| Code
| Review
| BibTeX
Courtès, L. 2020. [Re] Storage Tradeoffs in a Collaborative Backup Service for Mobile Devices. ReScience C 6, 1, #6.
-
Reproduction
in Fluid dynamics
(Fortran77)
| 10.5281/zenodo.3889694
| PDF
| Code
| Review
| BibTeX
Hinsen, K. 2020. [¬Rp] Stokes drag on conglomerates of spheres. ReScience C 6, 1, #7.
-
Reproduction
in Computer Science
(Applesoft Basic)
| 10.5281/zenodo.3886628
| PDF
| Code
| BibTeX
Rougier, N.P. 2020. [Rp] LOUPE. ReScience C 6, 1, #3.
-
Reproduction
in Biophysics
(Python)
| 10.5281/zenodo.3886447
| PDF
| Code
| Review
| BibTeX
Hinsen, K. 2020. [Rp] Structural flexibility in proteins - impact of the crystal environment. ReScience C 6, 1, #5.
-
Reproduction
in Biophysics
(Mathematica)
| 10.5281/zenodo.3886412
| PDF
| Code
| Review
| BibTeX
Robert, C.H. 2020. [Rp] Reproducibility report: Estimating friction coefficients of mixed globular/chain molecules, such as protein/DNA complexes. [Biophys J 69, 840-848 (1995)]. ReScience C 6, 1, #4.
-
Reproduction
in Analytical Chemistry
(FORTRAN77)
| 10.5281/zenodo.3904595
| PDF
| Code
| Review
| BibTeX
Delsuc, M.-A. 2020. [Rp] Gifa V.4: A complete package for NMR data set processing. ReScience C 6, 1, #9.
-
Reproduction
in Parallel Programming
(OCaml)
| 10.5281/zenodo.4041602
| PDF
| Code
| Review
| BibTeX
Di Cosmo, R. and Danelutto, M. 2020. [Rp] Reproducing and replicating the OCamlP3l experiment. ReScience C 6, 1, #2.
-
Reproduction
in Chemical Physics
(Fortran)
| 10.5281/zenodo.3630224
| PDF
| Code
| Review
| BibTeX
McBane, G.C. 2020. [Rp] Reproduction of interaction second virial coefficient calculation for H_2–CO interactions [J. Chem. Phys. vol. 112, 4417 (2000)]. ReScience C 6, 1, #1.
Volume 5 (2019)
Issue 3
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.3538217
| PDF
| Code
| Review
| BibTeX
Larisch, R. 2019. [Re] Connectivity reflects coding a model of voltage-based STDP with homeostasis. ReScience C 5, 3, #2.
-
Letter
in Machine Learning
(c++)
| 10.5281/zenodo.3528175
| PDF
| Code
| Review
| BibTeX
Sukhoy, V. and Stoytchev, A. 2019. Eliminating the Variability of Cross-Validation Results with LIBLINEAR due to Randomization and Parallelization. ReScience C 5, 3, #1.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.3545905
| PDF
| Code
| Review
| BibTeX
Bock, P. and Alexandre, F. 2019. [Re] The Wisconsin Card Sorting Test: Theoretical analysis and modeling in a neuronal network. ReScience C 5, 3, #3.
Issue 2 (ICLR Reproducibility Challenge 2019)
-
Editorial
| 10.5281/zenodo.3158244
| PDF
| Review
| BibTeX
Pineau, J., Sinha, K., Fried, G., Ke, R.N., and Larochelle, H. 2019. ICLR Reproducibility Challenge 2019. ReScience C 5, 2, #5.
-
Replication
in Machine Learning
(Python)
| 10.5281/zenodo.3160540
| PDF
| Code
| Review
| BibTeX
Devos, A., Chatel, S., and Grossglauser, M. 2019. [Re] Meta-learning with differentiable closed-form solvers. ReScience C 5, 2, #1.
-
Replication
in Machine Learning
(Python)
| 10.5281/zenodo.3161734
| PDF
| Code
| Review
| BibTeX
Fuente, A.D. la and Aduviri, R. 2019. [Re] Variational Sparse Coding. ReScience C 5, 2, #2.
-
Replication
in Machine Learning
(Python)
| 10.5281/zenodo.3162890
| PDF
| Code
| Review
| BibTeX
Bardi, F., von Baussnern, S., and Gjiriti, E. 2019. [Re] Learning Neural PDE Solvers with Convergence Guarantees ICLR Reproducibility Challenge 2019. ReScience C 5, 2, #3.
-
Replication
in Machine Learning
(python)
| 10.5281/zenodo.3162114
| PDF
| Code
| Review
| BibTeX
Didolkar, A. 2019. [Re] h-detach: Modifying the LSTM gradient towards better optimization. ReScience C 5, 2, #4.
Issue 1
-
Replication
in Ecology
(Python)
| 10.5281/zenodo.3234524
| PDF
| Code
| Review
| BibTeX
Etherington, T.R. and Lieske, D.J. 2019. [Re] Resampling methods for evaluating classification accuracy of wildlife habitat models. ReScience C 5, 1, #4.
-
Editorial
| 10.5281/zenodo.3069619
| PDF
| BibTeX
Hinsen, K. and Rougier, N.P. 2019. ReScience (R)evolution. ReScience C 5, 1, #3.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.2611252
| PDF
| Code
| Review
| BibTeX
Tennøe, S., Hodne, K., Haug, T.M., Weltzien, F.-A., Einevoll, G.T., and Halnes, G. 2019. [Re] Fast-Activating Voltage- and Calcium-Dependent Potassium (BK) Conductance Promotes Bursting in Pituitary Cells: A Dynamic Clamp Study. ReScience 5, 1, #2.
-
Replication
in Computational Ecology
(Julia)
| 10.5281/zenodo.2598793
| PDF
| Code
| Review
| BibTeX
Caron, D., Lessard, V., Wu, Q., and Poisot, T. 2019. [Re] Insect natural enemies as regulating factors. ReScience 5, 1, #1.
Volume 4 (2018)
Issue 1
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.1327348
| PDF
| Code
| Review
| BibTeX
Hathway, P. and Goodman, D.F.M. 2018. [Re] Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains. ReScience 4, 1, #6.
-
Replication
in Computational Ecology
(Julia)
| 10.5281/zenodo.1402676
| PDF
| Code
| Review
| BibTeX
Poisot, T. 2018. [Re] On the coexistence of specialists and generalists. ReScience 4, 1, #7.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.1289889
| PDF
| Code
| Review
| BibTeX
Bavard, S. and Théro, H. 2018. [Re] Adaptive properties of differential learning rates for positive and negative outcomes. ReScience 4, 1, #5.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.1246659
| PDF
| Code
| Review
| BibTeX
Cazé, R., Stimberg, M., and Girard, B. 2018. [Re] Non-additive coupling enables propagation of synchronous spiking activity in purely random networks. ReScience 4, 1, #1.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.1244116
| PDF
| Code
| Review
| BibTeX
Shimoura, R.O., Kamij, N.L., Pena, R.F.O., et al. 2018. [Re] The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. ReScience 4, 1, #2.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.1241004
| PDF
| Code
| Review
| BibTeX
Senden, M., Schuecker, J., Hahne, J., Diesmann, M., and Goebel, R. 2018. [Re] A neural model of the saccade generator in the reticular formation. ReScience 4, 1, #3.
-
Replication
in Computational Biology
(Python)
| 10.5281/zenodo.1254629
| PDF
| Code
| Review
| BibTeX
Mondeel, T.D.G.A., Ogundipe, V., and Westerhoff, H.V. 2018. [Re] Predicting metabolic biomarkers of human inborn errors of metabolism. ReScience 4, 1, #4.
Volume 3 (2017)
Issue 1
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.1003214
| PDF
| Code
| Review
| BibTeX
Detorakis, G. 2017. [Re] A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors. ReScience 3, 1, #7.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.890901
| PDF
| Code
| Review
| BibTeX
Diem, A.K. 2017. [Re] A bidirectional model for communication in the neurovascular unit. ReScience 3, 1, #9.
-
Replication
in Computational Evolution
(R)
| 10.5281/zenodo.890884
| PDF
| Code
| Review
| BibTeX
Stojić, H. 2017. [Re] How learning can guide evolution. ReScience 3, 1, #8.
-
Replication
in Game Theory
(Python)
| 10.5281/zenodo.847732
| PDF
| Code
| Review
| BibTeX
Stollmeier, F. 2017. [Re] A simple rule for the evolution of cooperation on graphs and social networks. ReScience 3, 1, #5.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.854616
| PDF
| Code
| Review
| BibTeX
Metzner, C. 2017. [Re] Modeling GABA Alterations in Schizophrenia: A Link Between Impaired Inhibition and Gamma and Beta Auditory Entrainment. ReScience 3, 1, #6.
-
Replication
in Computer Graphics
(Python)
| 10.5281/zenodo.802285
| PDF
| Code
| Data
| Review
| BibTeX
Rougier, N.P. 2017. [Re] Weighted Voronoi Stippling. ReScience 3, 1, #4.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.583814
| PDF
| Code
| Review
| BibTeX
Rostami, V., Ito, J., Denker, M., and Grün, S. 2017. [Re] Spike Synchronization and Rate Modulation Differentially Involved in Motor Cortical Function. ReScience 3, 1, #3.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.495237
| PDF
| Code
| Review
| BibTeX
Henriques, R.N., Rokem, A., Garyfallidis, E., St-Jean, S., Peterson, E.T., and Correia, M.M. 2017. [Re] Optimization of a free water elimination two-compartment model for diffusion tensor imaging. ReScience 3, 1, #2.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.254145
| PDF
| Code
| Review
| BibTeX
Shifman, A. 2017. [Re] Ionic Current Model of a Hypoglossal Motoneuron. ReScience 3, 1, #1.
Volume 2 (2016)
Issue 1
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.200334
| PDF
| Code
| Review
| BibTeX
Masson, E.L. and Alexandre, F. 2016. [Re] How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks. ReScience 2, 1, #7.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.159545
| PDF
| Code
| Review
| BibTeX
Vitay, J. 2016. [Re] Robust timing and motor patterns by taming chaos in recurrent neural networks. ReScience 2, 1, #5.
-
Replication
in Computational Neurosience
(Python)
| 10.5281/zenodo.161526
| PDF
| Code
| Review
| BibTeX
Maksimov, A., Albada, S.J. van, and Diesmann, M. 2016. [Re] Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. ReScience 2, 1, #6.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.61697
| PDF
| Code
| Review
| BibTeX
Detorakis, G. 2016. [Re] Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking. ReScience 2, 1, #4.
-
Replication
in Computational Ecology
(R)
| 10.5281/zenodo.50213
| PDF
| Code
| Review
| BibTeX
Petchey, O., Plebani, M., and Pennekamp, F. 2016. [Re] Chaos in a long-term experiment with a plankton community. ReScience 2, 1, #3.
-
Replication
in Computational Ecology
(R)
| 10.5281/zenodo.47146
| PDF
| Code
| Review
| BibTeX
Stachelek, J. 2016. [Re] Least-cost modelling on irregular landscape graphs. ReScience 2, 1, #2.
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.45852
| PDF
| Code
| Review
| BibTeX
Viejo, G., Girard, B., and Khamassi, M. 2016. [Re] Speed/accuracy trade-off between the habitual and the goal-directed process. ReScience 2, 1, #1.
Volume 1 (2015)
Issue 1
-
Replication
in Computational Neuroscience
(Python)
| 10.5281/zenodo.27944
| PDF
| Code
| Review
| BibTeX
Topalidou, M. and Rougier, N.P. 2015. [Re] Interaction between cognitive and motor cortico-basal ganglia loops during decision making: a computational study. ReScience 1, 1, #1.